LLaMA-Factory/tests/model/model_utils/test_packing.py

69 lines
2.1 KiB
Python
Raw Permalink Normal View History

2024-07-03 17:10:55 +00:00
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2024-07-03 20:00:12 +00:00
import pytest
2024-07-03 17:10:55 +00:00
import torch
from llamafactory.model.model_utils.packing import get_seqlens_in_batch, get_unpad_data
2024-07-03 20:00:12 +00:00
@pytest.mark.parametrize(
"attention_mask,golden_seq_lens",
[
(
[
[1, 1, 2, 2, 2, 0],
[1, 2, 2, 3, 3, 3],
],
[2, 3, 1, 2, 3],
),
(
[[1]],
[1],
),
],
)
def test_get_seqlens_in_batch(attention_mask, golden_seq_lens):
attention_mask_with_indices = torch.tensor(attention_mask)
2024-07-03 17:10:55 +00:00
seqlens_in_batch = get_seqlens_in_batch(attention_mask_with_indices)
2024-07-03 20:00:12 +00:00
assert torch.all(seqlens_in_batch == torch.tensor(golden_seq_lens))
2024-07-03 17:10:55 +00:00
2024-07-03 19:47:05 +00:00
2024-07-03 20:00:12 +00:00
@pytest.mark.parametrize(
"attention_mask,golden_indices,golden_cu_seqlens,golden_max_seqlen",
[
(
[
[1, 1, 2, 2, 2, 0],
[1, 2, 2, 3, 3, 3],
],
[0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11],
[0, 2, 5, 6, 8, 11],
3,
),
(
[[1]],
[0],
[0, 1],
1,
),
],
)
def test_get_unpad_data(attention_mask, golden_indices, golden_cu_seqlens, golden_max_seqlen):
attention_mask_with_indices = torch.tensor(attention_mask)
2024-07-03 19:47:05 +00:00
indices, cu_seqlens, max_seqlen_in_batch = get_unpad_data(attention_mask_with_indices)
2024-07-03 20:00:12 +00:00
assert torch.all(indices == torch.tensor(golden_indices))
assert torch.all(cu_seqlens == torch.tensor(golden_cu_seqlens, dtype=torch.int32))
assert max_seqlen_in_batch == golden_max_seqlen