LLaMA-Factory/examples/extras/llama_pro/llama3_freeze_sft.yaml

42 lines
776 B
YAML
Raw Normal View History

2024-05-16 17:02:00 +00:00
### model
2024-05-06 14:51:02 +00:00
model_name_or_path: models/llama3-8b-instruct-pro
2024-05-16 17:02:00 +00:00
### method
2024-05-06 14:51:02 +00:00
stage: sft
do_train: true
finetuning_type: freeze
2024-05-15 16:35:28 +00:00
freeze_trainable_layers: 8
freeze_trainable_modules: all
2024-05-06 14:51:02 +00:00
use_llama_pro: true
2024-05-16 17:02:00 +00:00
### dataset
2024-05-17 19:44:56 +00:00
dataset: identity,alpaca_en_demo
2024-05-06 14:51:02 +00:00
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
2024-05-16 17:02:00 +00:00
### output
2024-05-06 14:51:02 +00:00
output_dir: saves/llama3-8b-instruct-pro/freeze/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
2024-05-16 17:02:00 +00:00
### train
2024-05-06 14:51:02 +00:00
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
2024-06-03 11:12:29 +00:00
learning_rate: 1.0e-4
2024-05-06 14:51:02 +00:00
num_train_epochs: 3.0
lr_scheduler_type: cosine
2024-06-03 11:12:29 +00:00
warmup_ratio: 0.1
2024-06-27 17:17:07 +00:00
bf16: true
2024-06-12 19:15:06 +00:00
ddp_timeout: 180000000
2024-05-06 14:51:02 +00:00
2024-05-16 17:02:00 +00:00
### eval
2024-05-13 12:39:36 +00:00
val_size: 0.1
2024-05-06 14:51:02 +00:00
per_device_eval_batch_size: 1
2024-06-05 17:49:20 +00:00
eval_strategy: steps
2024-05-06 14:51:02 +00:00
eval_steps: 500