LLaMA-Factory/src/api_demo.py

209 lines
6.6 KiB
Python
Raw Normal View History

2023-06-05 13:32:18 +00:00
# coding=utf-8
2023-06-22 16:17:05 +00:00
# Implements API for fine-tuned models in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
2023-06-05 13:32:18 +00:00
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
2023-06-22 12:46:24 +00:00
# Visit http://localhost:8000/docs for document.
2023-06-05 13:32:18 +00:00
2023-06-22 12:27:00 +00:00
import time
2023-06-05 13:32:18 +00:00
import torch
import uvicorn
2023-06-21 06:45:04 +00:00
from threading import Thread
2023-06-22 12:27:00 +00:00
from pydantic import BaseModel, Field
2023-06-22 16:17:05 +00:00
from fastapi import FastAPI, HTTPException
2023-06-30 02:09:59 +00:00
from fastapi.middleware.cors import CORSMiddleware
2023-06-22 16:17:05 +00:00
from contextlib import asynccontextmanager
2023-06-21 06:45:04 +00:00
from transformers import TextIteratorStreamer
2023-07-05 14:42:31 +00:00
from sse_starlette import EventSourceResponse
2023-06-22 12:27:00 +00:00
from typing import Any, Dict, List, Literal, Optional, Union
2023-06-05 13:32:18 +00:00
2023-06-22 12:27:00 +00:00
from utils import (
Template,
load_pretrained,
prepare_infer_args,
get_logits_processor
)
2023-06-05 13:32:18 +00:00
2023-06-22 12:27:00 +00:00
@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
yield
2023-06-07 08:02:07 +00:00
if torch.cuda.is_available():
2023-06-22 12:27:00 +00:00
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
2023-06-05 13:32:18 +00:00
2023-06-22 12:27:00 +00:00
app = FastAPI(lifespan=lifespan)
2023-06-05 13:32:18 +00:00
2023-06-30 02:09:59 +00:00
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
2023-06-22 12:27:00 +00:00
class ChatMessage(BaseModel):
2023-06-22 12:46:24 +00:00
role: Literal["user", "assistant", "system"]
2023-06-22 12:27:00 +00:00
content: str
2023-06-05 13:32:18 +00:00
2023-06-21 06:45:04 +00:00
2023-06-22 12:27:00 +00:00
class DeltaMessage(BaseModel):
2023-06-22 12:46:24 +00:00
role: Optional[Literal["user", "assistant", "system"]] = None
2023-06-22 12:27:00 +00:00
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = None
top_p: Optional[float] = None
2023-06-26 05:39:57 +00:00
max_length: Optional[int] = None
2023-06-22 12:27:00 +00:00
max_new_tokens: Optional[int] = None
stream: Optional[bool] = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length"]
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]]
2023-06-21 06:45:04 +00:00
2023-06-22 12:27:00 +00:00
class ChatCompletionResponse(BaseModel):
model: str
2023-06-22 16:17:05 +00:00
object: Literal["chat.completion", "chat.completion.chunk"]
2023-06-22 12:27:00 +00:00
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
@app.get("/v1/models", response_model=ModelList)
async def list_models():
global model_args
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
2023-06-22 12:27:00 +00:00
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
2023-06-22 16:17:05 +00:00
global model, tokenizer, source_prefix, generating_args
2023-06-22 12:27:00 +00:00
2023-06-22 12:46:24 +00:00
if request.messages[-1].role != "user":
raise HTTPException(status_code=400, detail="Invalid request")
2023-06-22 12:27:00 +00:00
query = request.messages[-1].content
2023-06-22 12:46:24 +00:00
2023-06-22 12:27:00 +00:00
prev_messages = request.messages[:-1]
if len(prev_messages) > 0 and prev_messages[0].role == "system":
2023-06-22 16:17:05 +00:00
prefix = prev_messages.pop(0).content
else:
prefix = source_prefix
2023-06-22 12:27:00 +00:00
history = []
if len(prev_messages) % 2 == 0:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
history.append([prev_messages[i].content, prev_messages[i+1].content])
2023-06-22 16:17:05 +00:00
inputs = tokenizer([prompt_template.get_prompt(query, history, prefix)], return_tensors="pt")
2023-06-22 12:27:00 +00:00
inputs = inputs.to(model.device)
2023-06-05 13:32:18 +00:00
gen_kwargs = generating_args.to_dict()
2023-06-22 12:27:00 +00:00
gen_kwargs.update({
"input_ids": inputs["input_ids"],
"temperature": request.temperature if request.temperature else gen_kwargs["temperature"],
"top_p": request.top_p if request.top_p else gen_kwargs["top_p"],
"logits_processor": get_logits_processor()
})
2023-06-26 05:39:57 +00:00
if request.max_length:
gen_kwargs.pop("max_new_tokens", None)
gen_kwargs["max_length"] = request.max_length
if request.max_new_tokens:
gen_kwargs.pop("max_length", None)
gen_kwargs["max_new_tokens"] = request.max_new_tokens
2023-06-22 12:27:00 +00:00
if request.stream:
generate = predict(gen_kwargs, request.model)
2023-07-05 14:42:31 +00:00
return EventSourceResponse(generate, media_type="text/event-stream")
2023-06-05 13:32:18 +00:00
2023-06-21 06:45:04 +00:00
generation_output = model.generate(**gen_kwargs)
2023-06-22 12:27:00 +00:00
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
2023-06-05 13:32:18 +00:00
response = tokenizer.decode(outputs, skip_special_tokens=True)
2023-06-22 12:27:00 +00:00
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop"
2023-06-21 06:45:04 +00:00
)
2023-06-22 12:27:00 +00:00
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
async def predict(gen_kwargs: Dict[str, Any], model_id: str):
2023-06-21 06:45:04 +00:00
global model, tokenizer
2023-06-16 08:32:17 +00:00
2023-06-21 06:45:04 +00:00
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
2023-06-22 12:27:00 +00:00
gen_kwargs["streamer"] = streamer
2023-06-21 06:45:04 +00:00
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
2023-06-22 12:27:00 +00:00
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
2023-06-22 16:17:05 +00:00
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
2023-07-05 14:42:31 +00:00
yield chunk.json(exclude_unset=True, ensure_ascii=False)
2023-06-22 12:27:00 +00:00
2023-06-21 06:45:04 +00:00
for new_text in streamer:
2023-06-22 12:27:00 +00:00
if len(new_text) == 0:
continue
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=new_text),
finish_reason=None
)
2023-06-22 16:17:05 +00:00
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
2023-07-05 14:42:31 +00:00
yield chunk.json(exclude_unset=True, ensure_ascii=False)
2023-06-22 12:27:00 +00:00
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
2023-06-22 16:17:05 +00:00
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
2023-07-05 14:42:31 +00:00
yield chunk.json(exclude_unset=True, ensure_ascii=False)
yield "[DONE]"
2023-06-21 06:45:04 +00:00
if __name__ == "__main__":
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
2023-06-05 13:32:18 +00:00
model, tokenizer = load_pretrained(model_args, finetuning_args)
2023-06-16 08:32:17 +00:00
2023-06-07 03:55:25 +00:00
prompt_template = Template(data_args.prompt_template)
2023-06-16 08:32:17 +00:00
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
2023-06-05 13:32:18 +00:00
2023-07-05 14:42:31 +00:00
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)