2023-09-23 13:10:17 +00:00
|
|
|
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
|
|
|
|
import datasets
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
_CITATION = """\
|
|
|
|
@article{li2023cmmlu,
|
|
|
|
title={CMMLU: Measuring massive multitask language understanding in Chinese},
|
|
|
|
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin},
|
|
|
|
journal={arXiv preprint arXiv:2306.09212},
|
|
|
|
year={2023}
|
|
|
|
}
|
|
|
|
"""
|
|
|
|
|
|
|
|
_DESCRIPTION = """\
|
|
|
|
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context.
|
|
|
|
"""
|
|
|
|
|
|
|
|
_HOMEPAGE = "https://github.com/haonan-li/CMMLU"
|
|
|
|
|
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
|
|
|
|
|
|
|
|
_URL = "cmmlu.zip"
|
|
|
|
|
|
|
|
task_list = [
|
|
|
|
'agronomy',
|
|
|
|
'anatomy',
|
|
|
|
'ancient_chinese',
|
|
|
|
'arts',
|
|
|
|
'astronomy',
|
|
|
|
'business_ethics',
|
|
|
|
'chinese_civil_service_exam',
|
|
|
|
'chinese_driving_rule',
|
|
|
|
'chinese_food_culture',
|
|
|
|
'chinese_foreign_policy',
|
|
|
|
'chinese_history',
|
|
|
|
'chinese_literature',
|
|
|
|
'chinese_teacher_qualification',
|
|
|
|
'clinical_knowledge',
|
|
|
|
'college_actuarial_science',
|
|
|
|
'college_education',
|
|
|
|
'college_engineering_hydrology',
|
|
|
|
'college_law',
|
|
|
|
'college_mathematics',
|
|
|
|
'college_medical_statistics',
|
|
|
|
'college_medicine',
|
|
|
|
'computer_science',
|
|
|
|
'computer_security',
|
|
|
|
'conceptual_physics',
|
|
|
|
'construction_project_management',
|
|
|
|
'economics',
|
|
|
|
'education',
|
|
|
|
'electrical_engineering',
|
|
|
|
'elementary_chinese',
|
|
|
|
'elementary_commonsense',
|
|
|
|
'elementary_information_and_technology',
|
|
|
|
'elementary_mathematics',
|
|
|
|
'ethnology',
|
|
|
|
'food_science',
|
|
|
|
'genetics',
|
|
|
|
'global_facts',
|
|
|
|
'high_school_biology',
|
|
|
|
'high_school_chemistry',
|
|
|
|
'high_school_geography',
|
|
|
|
'high_school_mathematics',
|
|
|
|
'high_school_physics',
|
|
|
|
'high_school_politics',
|
|
|
|
'human_sexuality',
|
|
|
|
'international_law',
|
|
|
|
'journalism',
|
|
|
|
'jurisprudence',
|
|
|
|
'legal_and_moral_basis',
|
|
|
|
'logical',
|
|
|
|
'machine_learning',
|
|
|
|
'management',
|
|
|
|
'marketing',
|
|
|
|
'marxist_theory',
|
|
|
|
'modern_chinese',
|
|
|
|
'nutrition',
|
|
|
|
'philosophy',
|
|
|
|
'professional_accounting',
|
|
|
|
'professional_law',
|
|
|
|
'professional_medicine',
|
|
|
|
'professional_psychology',
|
|
|
|
'public_relations',
|
|
|
|
'security_study',
|
|
|
|
'sociology',
|
|
|
|
'sports_science',
|
|
|
|
'traditional_chinese_medicine',
|
|
|
|
'virology',
|
|
|
|
'world_history',
|
|
|
|
'world_religions',
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class CMMLUConfig(datasets.BuilderConfig):
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
super().__init__(version=datasets.Version("1.0.1"), **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class CMMLU(datasets.GeneratorBasedBuilder):
|
|
|
|
BUILDER_CONFIGS = [
|
|
|
|
CMMLUConfig(
|
|
|
|
name=task_name,
|
|
|
|
)
|
|
|
|
for task_name in task_list
|
|
|
|
]
|
|
|
|
|
|
|
|
def _info(self):
|
|
|
|
features = datasets.Features(
|
|
|
|
{
|
|
|
|
"question": datasets.Value("string"),
|
|
|
|
"A": datasets.Value("string"),
|
|
|
|
"B": datasets.Value("string"),
|
|
|
|
"C": datasets.Value("string"),
|
|
|
|
"D": datasets.Value("string"),
|
|
|
|
"answer": datasets.Value("string"),
|
|
|
|
}
|
|
|
|
)
|
|
|
|
return datasets.DatasetInfo(
|
|
|
|
description=_DESCRIPTION,
|
|
|
|
features=features,
|
|
|
|
homepage=_HOMEPAGE,
|
|
|
|
license=_LICENSE,
|
|
|
|
citation=_CITATION,
|
|
|
|
)
|
|
|
|
|
|
|
|
def _split_generators(self, dl_manager):
|
|
|
|
data_dir = dl_manager.download_and_extract(_URL)
|
|
|
|
task_name = self.config.name
|
|
|
|
return [
|
|
|
|
datasets.SplitGenerator(
|
|
|
|
name=datasets.Split.TEST,
|
|
|
|
gen_kwargs={
|
|
|
|
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
|
|
|
|
},
|
|
|
|
),
|
|
|
|
datasets.SplitGenerator(
|
|
|
|
name=datasets.Split.TRAIN,
|
|
|
|
gen_kwargs={
|
|
|
|
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
|
|
|
|
},
|
|
|
|
),
|
|
|
|
]
|
|
|
|
|
|
|
|
def _generate_examples(self, filepath):
|
|
|
|
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
|
|
|
|
for i, instance in enumerate(df.to_dict(orient="records")):
|
2023-09-28 06:39:16 +00:00
|
|
|
question = instance.pop("Question", "")
|
|
|
|
answer = instance.pop("Answer", "")
|
|
|
|
instance["question"] = question
|
|
|
|
instance["answer"] = answer
|
2023-09-23 13:10:17 +00:00
|
|
|
yield i, instance
|