LLaMA-Factory/tests/test_toolcall.py

65 lines
2.4 KiB
Python
Raw Normal View History

2024-01-21 11:41:46 +00:00
import json
2024-03-07 12:26:31 +00:00
import os
2024-01-21 11:41:46 +00:00
from typing import Sequence
2024-01-21 11:15:27 +00:00
from openai import OpenAI
2024-02-05 14:50:43 +00:00
from transformers.utils.versions import require_version
2024-01-21 11:15:27 +00:00
2024-02-05 14:51:03 +00:00
2024-02-05 14:50:43 +00:00
require_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")
2024-01-21 11:15:27 +00:00
2024-01-21 11:41:46 +00:00
def calculate_gpa(grades: Sequence[str], hours: Sequence[int]) -> float:
grade_to_score = {"A": 4, "B": 3, "C": 2}
total_score, total_hour = 0, 0
for grade, hour in zip(grades, hours):
total_score += grade_to_score[grade] * hour
total_hour += hour
2024-04-01 13:35:18 +00:00
return round(total_score / total_hour, 2)
2024-01-21 11:41:46 +00:00
2024-03-07 12:26:31 +00:00
def main():
2024-02-14 18:27:36 +00:00
client = OpenAI(
api_key="0",
2024-03-07 12:26:31 +00:00
base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
2024-02-14 18:27:36 +00:00
)
2024-01-21 11:15:27 +00:00
tools = [
{
"type": "function",
"function": {
2024-01-21 11:41:46 +00:00
"name": "calculate_gpa",
"description": "Calculate the Grade Point Average (GPA) based on grades and credit hours",
2024-01-21 11:15:27 +00:00
"parameters": {
"type": "object",
"properties": {
2024-01-21 11:41:46 +00:00
"grades": {"type": "array", "items": {"type": "string"}, "description": "The grades"},
"hours": {"type": "array", "items": {"type": "integer"}, "description": "The credit hours"},
2024-01-21 11:15:27 +00:00
},
2024-01-21 11:41:46 +00:00
"required": ["grades", "hours"],
2024-01-21 11:15:27 +00:00
},
},
}
]
2024-03-07 12:26:31 +00:00
tool_map = {"calculate_gpa": calculate_gpa}
2024-01-21 11:41:46 +00:00
messages = []
messages.append({"role": "user", "content": "My grades are A, A, B, and C. The credit hours are 3, 4, 3, and 2."})
result = client.chat.completions.create(messages=messages, model="test", tools=tools)
2024-04-01 13:35:18 +00:00
if result.choices[0].message.tool_calls is None:
raise ValueError("Cannot retrieve function call from the response.")
messages.append(result.choices[0].message)
2024-01-21 11:41:46 +00:00
tool_call = result.choices[0].message.tool_calls[0].function
2024-04-01 13:35:18 +00:00
print(tool_call)
# Function(arguments='{"grades": ["A", "A", "B", "C"], "hours": [3, 4, 3, 2]}', name='calculate_gpa')
2024-01-21 11:41:46 +00:00
name, arguments = tool_call.name, json.loads(tool_call.arguments)
tool_result = tool_map[name](**arguments)
messages.append({"role": "tool", "content": json.dumps({"gpa": tool_result}, ensure_ascii=False)})
result = client.chat.completions.create(messages=messages, model="test", tools=tools)
print(result.choices[0].message.content)
2024-04-01 13:35:18 +00:00
# Based on the grades and credit hours you provided, your Grade Point Average (GPA) is 3.42.
2024-03-07 12:26:31 +00:00
if __name__ == "__main__":
main()