2023-07-19 12:59:15 +00:00
If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json` .
2023-05-28 10:09:04 +00:00
```json
"dataset_name": {
2023-12-18 11:09:31 +00:00
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the ModelScope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
2023-12-09 12:53:18 +00:00
"file_name": "the name of the dataset file in this directory. (required if above are not specified)",
2023-11-02 16:15:23 +00:00
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"subset": "the name of the subset. (optional, default: None)",
2023-12-09 12:53:18 +00:00
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
2023-11-02 16:15:23 +00:00
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
2023-07-22 06:29:22 +00:00
"columns": {
2023-11-02 16:15:23 +00:00
"prompt": "the column name in the dataset containing the prompts. (default: instruction, for alpaca)",
"query": "the column name in the dataset containing the queries. (default: input, for alpaca)",
"response": "the column name in the dataset containing the responses. (default: output, for alpaca)",
"history": "the column name in the dataset containing the histories. (default: None, for alpaca)",
"messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)",
"role": "the key in the message represents the identity. (default: from, for sharegpt)",
2023-12-12 11:45:59 +00:00
"content": "the key in the message represents the content. (default: value, for sharegpt)",
"system": "the column name in the dataset containing the system prompts. (default: None, for both)"
2023-09-01 11:00:45 +00:00
}
2023-05-28 10:09:04 +00:00
}
```
2023-11-02 16:15:23 +00:00
Given above, you can use the custom dataset via specifying `--dataset dataset_name` .
2023-08-22 05:30:57 +00:00
2023-11-02 16:15:23 +00:00
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
```json
[
{
"instruction": "user instruction (required)",
"input": "user input (optional)",
"output": "model response (required)",
2023-12-12 11:45:59 +00:00
"system": "system prompt (optional)",
2023-11-02 16:15:23 +00:00
"history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
```json
"dataset_name": {
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
2023-12-12 11:45:59 +00:00
"system": "system",
2023-11-02 16:15:23 +00:00
"history": "history"
}
}
```
where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model.
2023-12-12 11:45:59 +00:00
The `system` column will be used as the system prompt in the template. The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training** .
2023-11-02 16:15:23 +00:00
For the pre-training datasets, only the `prompt` column will be used for training.
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
2023-08-22 11:46:09 +00:00
2023-08-22 05:30:57 +00:00
```json
{
2023-11-02 16:15:23 +00:00
"instruction": "user instruction",
"input": "user input",
2023-08-22 11:46:09 +00:00
"output": [
2023-11-02 16:15:23 +00:00
"chosen answer",
"rejected answer"
2023-09-01 11:00:45 +00:00
]
2023-08-22 05:30:57 +00:00
}
```
2023-11-02 16:15:23 +00:00
The dataset in sharegpt format should follow the below format:
```json
[
{
"conversations": [
{
"from": "human",
"value": "user instruction"
},
{
"from": "gpt",
"value": "model response"
}
2023-12-12 11:45:59 +00:00
],
"system": "system prompt (optional)"
2023-11-02 16:15:23 +00:00
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
```json
"dataset_name": {
"columns": {
"messages": "conversations",
"role": "from",
2023-12-12 11:45:59 +00:00
"content": "value",
"system": "system"
2023-11-02 16:15:23 +00:00
}
}
```
where the `messages` column should be a list whose length is even, and follow the `u/a/u/a/u/a` order.
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.