Merge pull request #221 from mrhan1993/main

根据GLM Efficient Tuning添加中文README,web添加了server_port参数
This commit is contained in:
hoshi-hiyouga 2023-07-22 13:04:25 +08:00 committed by GitHub
commit 21daf34f0c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 392 additions and 2 deletions

View File

@ -8,6 +8,8 @@
👋 Join our [WeChat](assets/wechat.jpg).
\[ English | [中文](README_zh.md) \]
## Changelog
[23/07/19] Now we support training the **LLaMA-2** models in this repo. Try `--model_name_or_path meta-llama/Llama-2-7b-hf` argument to use the LLaMA-2 model. Remember to use `--prompt_template llama2` argument when you are using the LLaMA-2-chat model.

370
README_zh.md Normal file
View File

@ -0,0 +1,370 @@
# LLaMA Efficient Tuning
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Efficient-Tuning)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/pulls)
👋 加入我们的 [微信群](assets/wechat.jpg).
\[ [English](README.md) | 中文 \]
## 更新日志
[23/07/19] 现在我们在该仓库中提供了对于 **LLaMA-2** 模型的训练支持. 试试 `--model_name_or_path meta-llama/Llama-2-7b-hf` 参数来使用 LLaMA-2 模型. 使用 LLaMA-2-chat 模型时记得使用 `--prompt_template llama2` 参数.
[23/07/18] 我们开发了一个用于训练、评估和推理的 all-in-one Web UI, . 试试 `train_web.py` 在浏览器中微调模型. 感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在项目发展中做出的努力.
[23/07/11] 现在我们在该仓库中提供了对于 **Baichuan-13B** 模型的训练支持. 训练 Baichuan-13B 时使用 `tests/modeling_baichuan.py` , 然后试试 `--model_name_or_path path_to_baichuan_model``--lora_target W_pack` 参数来训练 Baichuan-13B 模型. 使用 Baichuan-13B-Chat 模型时记得使用 `--prompt_template baichuan` 参数.
[23/07/09] 我们开源了 [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。
[23/07/07] 现在我们在该仓库中提供了对于 **InternLM-7B** 模型的训练支持. 试试 `--model_name_or_path internlm/internlm-7b` 参数来使用 InternLM 模型. 使用 InternLM-chat 模型时记得使用 `--prompt_template intern` 参数.
[23/07/05] 现在我们在该仓库中提供了对于 **Falcon-7B/40B** 模型的训练支持. 试试 `--model_name_or_path tiiuae/falcon-7b``--lora_target query_key_value` 参数来使用 Falcon 模型.
[23/06/29] 我们提供了一个使用 instruction-following 数据集训练聊天模型的 **可复现的示例** , 更多细节请看这里 [Hugging Face Repo](https://huggingface.co/hiyouga/baichuan-7b-sft).
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入任意基于 ChatGPT 的应用中.
[23/06/15] 现在我们在该仓库中提供了对于 **Baichuan-7B** 模型的训练支持. 试试 `--model_name_or_path baichuan-inc/Baichuan-7B``--lora_target W_pack` 参数来使用 Baichuan-7B 模型.
[23/06/03] 现在我们支持了量化训练和推理 (也叫作 **[QLoRA](https://github.com/artidoro/qlora)**). 试试 `--quantization_bit 4/8` 参数来处理量化模型. (实验性功能)
[23/05/31] 现在我们在该仓库中提供了对于 **BLOOM & BLOOMZ** 模型的训练支持. 试试 `--model_name_or_path bigscience/bloomz-7b1-mt``--lora_target query_key_value` 参数来使用 BLOOMZ 模型.
## 支持的模型
- [LLaMA](https://github.com/facebookresearch/llama) (7B/13B/33B/65B)
- [LLaMA-2](https://huggingface.co/meta-llama) (7B/13B/70B)
- [BLOOM](https://huggingface.co/bigscience/bloom) & [BLOOMZ](https://huggingface.co/bigscience/bloomz) (560M/1.1B/1.7B/3B/7.1B/176B)
- [Falcon](https://huggingface.co/tiiuae/falcon-7b) (7B/40B)
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B) (7B/13B)
- [InternLM](https://github.com/InternLM/InternLM) (7B)
## 支持的训练方法
- [(Continually) pre-training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)
- Full-parameter tuning
- Partial-parameter tuning
- [LoRA](https://arxiv.org/abs/2106.09685)
- [QLoRA](https://arxiv.org/abs/2305.14314)
- [Supervised fine-tuning](https://arxiv.org/abs/2109.01652)
- Full-parameter tuning
- Partial-parameter tuning
- [LoRA](https://arxiv.org/abs/2106.09685)
- [QLoRA](https://arxiv.org/abs/2305.14314)
- [RLHF](https://arxiv.org/abs/2203.02155)
- [LoRA](https://arxiv.org/abs/2106.09685)
- [QLoRA](https://arxiv.org/abs/2305.14314)
## 提供的训练集
- 对预训练:
- [Wiki Demo (en)](data/wiki_demo.txt)
- 对监督微调:
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [Self-cognition (zh)](data/self_cognition.json)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [RefGPT (zh)](https://github.com/sufengniu/RefGPT)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- 对奖励模型:
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
更多细节请查看 [data/README.md](data/README_zh.md).
部分数据集使用之前需要确认, 因此推荐使用下面的命令登录您的 Huggingface 账户.
```bash
pip install --upgrade huggingface_hub
huggingface-cli login
```
## 软件依赖
- Python 3.8+ 和 PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
- jieba, rouge-chinese 和 nltk (用于评估)
- gradio 和 matplotlib (用于网页端交互)
- uvicorn, fastapi 和 sse-starlette (用于 API)
以及 **强有力的 GPUs**!
如果要在 Windows 平台上开启量化 LoRA (QLoRA) , 需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.1.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
```
## 起步
### 准备数据 (可选)
关于数据集文件的格式,请参考 `data/example_dataset` 文件夹的内容. 构建自定义数据集时, 既可以使用单个 `.json` 文件, 也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件.
注意:使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README.md`.
### 环境安装 (可选)
```bash
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
conda create -n llama_etuning python=3.10
conda activate llama_etuning
cd LLaMA-Efficient-Tuning
pip install -r requirements.txt
```
### All-in-one Web UI
```bash
python src/train_web.py
```
### (Continually) Pre-Training
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
--model_name_or_path path_to_your_model \
--do_train \
--dataset wiki_demo \
--finetuning_type lora \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
### 监督微调
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--do_train \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
### 奖励模型训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
--model_name_or_path path_to_your_model \
--do_train \
--dataset comparison_gpt4_en \
--finetuning_type lora \
--output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
### PPO Training (RLHF)
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
--model_name_or_path path_to_your_model \
--do_train \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--resume_lora_training False \
--plot_loss
```
### 分布式微调
```bash
accelerate config # configure the environment
accelerate launch src/train_bash.py # arguments (same as above)
```
<details><summary>使用 DeepSpeed ZeRO-2 全量微调的配置示例</summary>
```yaml
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 4
gradient_clipping: 0.5
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
downcast_bf16: 'no'
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
</details>
### 指标评估BLEU分数和汉语ROUGE分数
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--do_eval \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_eval_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
```
我们建议在 4/8-bit 评估中使用 `--per_device_eval_batch_size=1``--max_target_length 128`.
### 模型预测
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--do_predict \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
```
如果需要预测的样本没有标签,请首先在 `response` 列中填入一些占位符,以免样本在预处理阶段被丢弃。
### API 服务
```bash
python src/api_demo.py \
--model_name_or_path path_to_your_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
访问 `http://localhost:8000/docs` 获取 API 文档.
### 命令行测试
```bash
python src/cli_demo.py \
--model_name_or_path path_to_your_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 浏览器测试
```bash
python src/web_demo.py \
--model_name_or_path path_to_your_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 导出微调模型
```bash
python src/export_model.py \
--model_name_or_path path_to_your_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
```
## 协议
本仓库采用 [Apache-2.0](LICENSE) 协议开源.
请遵循模型许可证使用相应的模型权重:
- [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md)
- [LLaMA-2](https://ai.meta.com/llama/license/)
- [BLOOM](https://huggingface.co/spaces/bigscience/license)
- [Falcon](LICENSE)
- [baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
- [InternLM](https://github.com/InternLM/InternLM#open-source-license)
## 引用
如果您觉得此项目有帮助,请考虑以下列格式引用:
```bibtex
@Misc{llama-efficient-tuning,
title = {LLaMA Efficient Tuning},
author = {hiyouga},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
year = {2023}
}
```
## 致谢
该 repo 是 [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning) 的兄弟产品. 它们都拥有在大规模语言模型上实现高效调优的相似的代码结构。
## Star History
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Efficient-Tuning&type=Date)

18
data/README_zh.md Normal file
View File

@ -0,0 +1,18 @@
如果您使用自定义数据集,请务必在 dataset_info.json 文件中以如下格式提供您的数据集定义。
```json
"数据集名称": {
"hf_hub_url": "HuggingFace上的项目地址若指定则忽略下列三个参数",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数)",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的SHA-1哈希值可选",
"columns": {
"prompt": "数据集代表提示词的表头名称默认instruction",
"query": "数据集代表请求的表头名称默认input",
"response": "数据集代表回答的表头名称默认output",
"history": "数据集代表历史对话的表头名称默认None"
}
}
```
其中 prompt 和 response 列应当是非空的字符串。query 列的内容将会和 prompt 列拼接作为模型输入。history 列应当是一个列表,其中每个元素是一个字符串二元组,分别代表用户请求和模型答复。

View File

@ -4,7 +4,7 @@ from llmtuner.webui.interface import create_ui
def main():
demo = create_ui()
demo.queue()
demo.launch(server_name="0.0.0.0", share=False, inbrowser=True)
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True)
if __name__ == "__main__":

View File

@ -29,7 +29,7 @@ def main():
lang.change(manager.gen_label, [lang], [lang] + list(chat_elems.values()))
demo.queue()
demo.launch(server_name="0.0.0.0", share=False, inbrowser=True)
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True)
if __name__ == "__main__":