update tests
This commit is contained in:
parent
0c699de39d
commit
636bb9c1e6
|
@ -12,42 +12,57 @@
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from llamafactory.model.model_utils.packing import get_seqlens_in_batch, get_unpad_data
|
from llamafactory.model.model_utils.packing import get_seqlens_in_batch, get_unpad_data
|
||||||
|
|
||||||
|
|
||||||
def test_get_seqlens_in_batch():
|
@pytest.mark.parametrize(
|
||||||
attention_mask_with_indices = torch.tensor(
|
"attention_mask,golden_seq_lens",
|
||||||
[
|
[
|
||||||
[1, 1, 2, 2, 2, 0],
|
(
|
||||||
[1, 2, 2, 3, 3, 3],
|
[
|
||||||
]
|
[1, 1, 2, 2, 2, 0],
|
||||||
)
|
[1, 2, 2, 3, 3, 3],
|
||||||
|
],
|
||||||
|
[2, 3, 1, 2, 3],
|
||||||
|
),
|
||||||
|
(
|
||||||
|
[[1]],
|
||||||
|
[1],
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_get_seqlens_in_batch(attention_mask, golden_seq_lens):
|
||||||
|
attention_mask_with_indices = torch.tensor(attention_mask)
|
||||||
seqlens_in_batch = get_seqlens_in_batch(attention_mask_with_indices)
|
seqlens_in_batch = get_seqlens_in_batch(attention_mask_with_indices)
|
||||||
assert list(seqlens_in_batch.size()) == [5]
|
assert torch.all(seqlens_in_batch == torch.tensor(golden_seq_lens))
|
||||||
assert torch.all(seqlens_in_batch == torch.tensor([2, 3, 1, 2, 3]))
|
|
||||||
|
|
||||||
attention_mask_with_indices = torch.tensor([[1, 1, 1]])
|
|
||||||
seqlens_in_batch = get_seqlens_in_batch(attention_mask_with_indices)
|
|
||||||
assert list(seqlens_in_batch.size()) == [1]
|
|
||||||
assert torch.all(seqlens_in_batch == torch.tensor([3]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_get_unpad_data():
|
@pytest.mark.parametrize(
|
||||||
attention_mask_with_indices = torch.tensor(
|
"attention_mask,golden_indices,golden_cu_seqlens,golden_max_seqlen",
|
||||||
[
|
[
|
||||||
[1, 1, 2, 2, 2, 0],
|
(
|
||||||
[1, 2, 2, 3, 3, 3],
|
[
|
||||||
]
|
[1, 1, 2, 2, 2, 0],
|
||||||
)
|
[1, 2, 2, 3, 3, 3],
|
||||||
|
],
|
||||||
|
[0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11],
|
||||||
|
[0, 2, 5, 6, 8, 11],
|
||||||
|
3,
|
||||||
|
),
|
||||||
|
(
|
||||||
|
[[1]],
|
||||||
|
[0],
|
||||||
|
[0, 1],
|
||||||
|
1,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_get_unpad_data(attention_mask, golden_indices, golden_cu_seqlens, golden_max_seqlen):
|
||||||
|
attention_mask_with_indices = torch.tensor(attention_mask)
|
||||||
indices, cu_seqlens, max_seqlen_in_batch = get_unpad_data(attention_mask_with_indices)
|
indices, cu_seqlens, max_seqlen_in_batch = get_unpad_data(attention_mask_with_indices)
|
||||||
assert torch.all(indices == torch.tensor([0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11]))
|
assert torch.all(indices == torch.tensor(golden_indices))
|
||||||
assert torch.all(cu_seqlens == torch.tensor([0, 2, 5, 6, 8, 11], dtype=torch.int32))
|
assert torch.all(cu_seqlens == torch.tensor(golden_cu_seqlens, dtype=torch.int32))
|
||||||
assert max_seqlen_in_batch == 3
|
assert max_seqlen_in_batch == golden_max_seqlen
|
||||||
|
|
||||||
attention_mask_with_indices = torch.tensor([[1, 1, 1]])
|
|
||||||
indices, cu_seqlens, max_seqlen_in_batch = get_unpad_data(attention_mask_with_indices)
|
|
||||||
assert torch.all(indices == torch.tensor([0, 1, 2]))
|
|
||||||
assert torch.all(cu_seqlens == torch.tensor([0, 3], dtype=torch.int32))
|
|
||||||
assert max_seqlen_in_batch == 3
|
|
||||||
|
|
Loading…
Reference in New Issue