add galore examples
This commit is contained in:
parent
28f7862188
commit
7230e1177d
|
@ -70,9 +70,9 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||
|
||||
## Changelog
|
||||
|
||||
[24/03/07] We supported [GaLore](https://arxiv.org/abs/2403.03507) algorithm. Try `--use_galore` to use the memory-efficient optimizer.
|
||||
[24/03/07] We supported **[GaLore](https://arxiv.org/abs/2403.03507)** algorithm. Try `--use_galore` to use the memory-efficient optimizer.
|
||||
|
||||
[24/03/07] We integrated [vLLM](https://github.com/vllm-project/vllm) for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
|
||||
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
|
||||
|
||||
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
|
||||
|
||||
|
|
|
@ -70,9 +70,9 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||
|
||||
## 更新日志
|
||||
|
||||
[24/03/07] 我们支持了 [GaLore](https://arxiv.org/abs/2403.03507) 算法。请使用 `--use_galore` 参数切换显存高效的优化器。
|
||||
[24/03/07] 我们支持了 **[GaLore](https://arxiv.org/abs/2403.03507)** 算法。请使用 `--use_galore` 参数切换显存高效的优化器。
|
||||
|
||||
[24/03/07] 我们集成了 [vLLM](https://github.com/vllm-project/vllm) 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA,请先合并权重。)
|
||||
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA,请先合并权重。)
|
||||
|
||||
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `--use_dora` 参数进行 DoRA 微调。
|
||||
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../../data \
|
||||
--template default \
|
||||
--finetuning_type freeze \
|
||||
--name_module_trainable mlp,self_attn \
|
||||
--num_layer_trainable 8 \
|
||||
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
|
@ -0,0 +1,36 @@
|
|||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../../data \
|
||||
--template default \
|
||||
--finetuning_type freeze \
|
||||
--name_module_trainable mlp,self_attn \
|
||||
--num_layer_trainable 8 \
|
||||
--use_galore \
|
||||
--galore_target mlp,self_attn \
|
||||
--galore_rank 32 \
|
||||
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
|
@ -0,0 +1,8 @@
|
|||
#!/bin/bash
|
||||
|
||||
pip install -e ../../../.
|
||||
|
||||
python ../../../scripts/llama_pro.py \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--output_dir ../../../models/llama2-7b-pro \
|
||||
--num_expand 8
|
|
@ -0,0 +1,33 @@
|
|||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path ../../../models/llama2-7b-pro \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../../data \
|
||||
--template default \
|
||||
--finetuning_type freeze \
|
||||
--name_module_trainable all \
|
||||
--num_layer_trainable 8 \
|
||||
--output_dir ../../../saves/LLaMA2-7B-Pro/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
Loading…
Reference in New Issue