Merge pull request #5290 from simonJJJ/qwen2_vl

support qwen2-vl
This commit is contained in:
hoshi-hiyouga 2024-08-30 02:10:36 +08:00 committed by GitHub
commit 727e184840
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 339 additions and 6 deletions

View File

@ -38,6 +38,20 @@
"assistant_tag": "assistant"
}
},
"qwen2vl_demo": {
"file_name": "qwen2vl_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"alpaca_en": {
"hf_hub_url": "llamafactory/alpaca_en",
"ms_hub_url": "llamafactory/alpaca_en"

140
data/qwen2vl_demo.json Normal file
View File

@ -0,0 +1,140 @@
[
{
"messages": [
{
"content": "<|image_pad|>Who are they?",
"role": "user"
},
{
"content": "They're Kane and Gretzka from Bayern Munich.",
"role": "assistant"
},
{
"content": "What are they doing?",
"role": "user"
},
{
"content": "They are celebrating on the soccer field.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<|image_pad|>Who is he?",
"role": "user"
},
{
"content": "He's Thomas Muller from Bayern Munich.",
"role": "assistant"
},
{
"content": "<|image_pad|>Why is he on the ground?",
"role": "user"
},
{
"content": "Because he's sliding on his knees to celebrate.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg","mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<|image_pad|>Please describe this image",
"role": "user"
},
{
"content": "Chinese astronaut Gui Haichao is giving a speech.",
"role": "assistant"
},
{
"content": "What has he accomplished?",
"role": "user"
},
{
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
},
{
"messages": [
{
"content": "<|image_pad|>他们是谁?",
"role": "user"
},
{
"content": "他们是拜仁慕尼黑的凯恩和格雷茨卡。",
"role": "assistant"
},
{
"content": "<|image_pad|>他们在做什么?",
"role": "user"
},
{
"content": "他们在足球场上庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg","mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<|image_pad|>他是谁?",
"role": "user"
},
{
"content": "他是来自拜仁慕尼黑的托马斯·穆勒。",
"role": "assistant"
},
{
"content": "他为什么在地上?",
"role": "user"
},
{
"content": "因为他正在双膝跪地滑行庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<|image_pad|>请描述这张图片",
"role": "user"
},
{
"content": "中国宇航员桂海潮正在讲话。",
"role": "assistant"
},
{
"content": "他取得过哪些成就?",
"role": "user"
},
{
"content": "他于2022年6月被任命为神舟十六号任务的有效载荷专家从而成为2023年5月30日进入太空的首位平民宇航员。他负责在轨操作空间科学实验有效载荷。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
}
]

View File

@ -0,0 +1,40 @@
### model
model_name_or_path: qwen2-vl-hf/qwen2-vl-7b-hf
visual_inputs: true
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: qwen2vl_demo
template: qwen2vl
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/qwen2-vl-7b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@ -0,0 +1,40 @@
### model
model_name_or_path: qwen2-vl-hf/qwen2-vl-7b-hf
visual_inputs: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: qwen2vl_demo
template: qwen2vl
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/qwen2-vl-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@ -72,9 +72,37 @@ class SFTDataCollatorWith4DAttentionMask(DataCollatorForSeq2Seq):
compute_dtype: "torch.dtype" = torch.float32
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
image_grid_thw = None
if "image_grid_thw" in features[0]:
image_grid_thw_list = [
torch.Tensor(feature["image_grid_thw"]).long()
for feature in features
if feature["image_grid_thw"][0][0] > 0
]
pixel_values_list = [
torch.Tensor(feature["pixel_values"]) for feature in features if feature["image_grid_thw"][0][0] > 0
]
if image_grid_thw_list:
image_grid_thw = torch.cat(image_grid_thw_list, 0)
else:
# Handle the case where the list is empty, for example:
image_grid_thw = None
if pixel_values_list:
pixel_values = torch.cat(pixel_values_list, 0)
else:
# Handle the case where the list is empty, for example:
pixel_values = None
features = [
{key: feature[key] for key in feature if key not in ["image_grid_thw", "pixel_values"]}
for feature in features
]
features = super().__call__(features)
if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)
if image_grid_thw is not None:
features["image_grid_thw"] = image_grid_thw
features["pixel_values"] = pixel_values
return features

View File

@ -78,6 +78,20 @@ def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") ->
return [0] * image_seq_length + [1] * (input_len - image_seq_length)
def get_qwen2vl_image_inputs(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
r"""
Processes visual inputs. support multi images
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
if len(images) != 0:
image_inputs = image_processor(images=images, return_tensors="pt")
else:
image = Image.new("RGB", (56, 56), (255, 255, 255))
image_inputs = image_processor(images=[image], return_tensors="pt")
image_inputs["image_grid_thw"][0][0] = 0
return {"pixel_values": image_inputs["pixel_values"], "image_grid_thw": image_inputs["image_grid_thw"]}
def infer_seqlen(source_len: int, target_len: int, cutoff_len: int) -> Tuple[int, int]:
r"""
Computes the real sequence length after truncation by the cutoff_len.

View File

@ -17,10 +17,17 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack, infer_seqlen
from .processor_utils import (
get_paligemma_token_type_ids,
get_pixel_values,
get_qwen2vl_image_inputs,
greedy_knapsack,
infer_seqlen,
)
if TYPE_CHECKING:
from PIL.Image import Image as ImageObject
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
@ -36,13 +43,32 @@ def _encode_supervised_example(
system: Optional[str],
tools: Optional[str],
template: "Template",
images: Sequence["ImageObject"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
cutoff_len: int,
train_on_prompt: bool,
mask_history: bool,
) -> Tuple[List[int], List[int]]:
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
if processor is not None and "image_grid_thw" in processor.model_input_names: # qwen2_vl models
image_processor = getattr(processor, "image_processor")
merge_length = image_processor.merge_size**2
if len(images) > 0:
image_grid_thw = get_qwen2vl_image_inputs(images, processor)["image_grid_thw"]
index = 0
for message in prompt:
content = message["content"]
while "<|image_pad|>" in content:
content = content.replace(
"<|image_pad|>",
template.vision_start_token
+ "<|placeholder|>" * (image_grid_thw[index].prod() // merge_length)
+ template.vision_end_token,
1,
)
index += 1
message["content"] = content.replace("<|placeholder|>", "<|image_pad|>")
elif processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
prompt[0]["content"] = template.image_token + prompt[0]["content"]
messages = prompt + response
@ -107,6 +133,8 @@ def preprocess_supervised_dataset(
model_inputs["pixel_values"] = []
if hasattr(processor, "image_seq_length"): # paligemma models
model_inputs["token_type_ids"] = []
if "image_grid_thw" in processor.model_input_names: # qwen2_vl models
model_inputs["image_grid_thw"] = []
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
@ -118,6 +146,7 @@ def preprocess_supervised_dataset(
response=examples["response"][i],
system=examples["system"][i],
tools=examples["tools"][i],
images=examples["images"][i],
template=template,
tokenizer=tokenizer,
processor=processor,
@ -129,9 +158,14 @@ def preprocess_supervised_dataset(
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
if processor is not None:
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
if hasattr(processor, "image_seq_length"): # paligemma models
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
if "image_grid_thw" in processor.model_input_names: # qwen2_vl models
image_inputs = get_qwen2vl_image_inputs(examples["images"][i], processor)
model_inputs["pixel_values"].append(image_inputs["pixel_values"])
model_inputs["image_grid_thw"].append(image_inputs["image_grid_thw"])
else:
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
if hasattr(processor, "image_seq_length"): # paligemma models
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
return model_inputs

View File

@ -42,6 +42,8 @@ class Template:
default_system: str
stop_words: List[str]
image_token: str
vision_start_token: str
vision_end_token: str
efficient_eos: bool
replace_eos: bool
@ -206,6 +208,8 @@ def _register_template(
default_system: str = "",
stop_words: Sequence[str] = [],
image_token: str = "<image>",
vision_start_token: str = "<|vision_start|>",
vision_end_token: str = "<|vision_end|>",
efficient_eos: bool = False,
replace_eos: bool = False,
) -> None:
@ -255,6 +259,8 @@ def _register_template(
default_system=default_system,
stop_words=stop_words,
image_token=image_token,
vision_start_token=vision_start_token,
vision_end_token=vision_end_token,
efficient_eos=efficient_eos,
replace_eos=replace_eos,
)
@ -783,6 +789,21 @@ _register_template(
)
_register_template(
name="qwen2vl",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
default_system="You are a helpful assistant.",
image_token="<|image_pad|>",
vision_start_token="<|vision_start|>",
vision_end_token="<|vision_end|>",
stop_words=["<|im_end|>"],
replace_eos=True,
)
_register_template(
name="sailor",
format_user=StringFormatter(slots=["<|im_start|>question\n{{content}}<|im_end|>\n<|im_start|>answer\n"]),

View File

@ -212,7 +212,7 @@ def _setup_lora_tuning(
target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers)
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
target_modules = "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
target_modules = "^(?!.*(?:vision_tower|visual)).*(?:{}).*".format("|".join(target_modules))
if (
finetuning_args.use_dora

View File

@ -36,6 +36,8 @@ def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool)
forbidden_modules.add("output")
elif model.config.model_type in ["llava", "paligemma"]:
forbidden_modules.add("multi_modal_projector")
elif model.config.model_type in ["qwen2_vl"]:
forbidden_modules.add("merger")
if freeze_vision_tower:
forbidden_modules.add("vision_tower")