fix loading valuehead
This commit is contained in:
parent
531a3764d9
commit
875e8e2349
|
@ -94,7 +94,7 @@ def _init_adapter(
|
|||
if model_args.checkpoint_dir is not None:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
assert is_mergeable and len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
|
||||
load_trainable_params(model, model_args.checkpoint_dir[0]) # load model checkpoints for non-peft methods
|
||||
assert load_trainable_params(model, model_args.checkpoint_dir[0]), "Model checkpoint is not correctly loaded."
|
||||
else:
|
||||
assert is_mergeable or len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
|
||||
|
||||
|
@ -217,7 +217,8 @@ def load_pretrained(
|
|||
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
||||
|
||||
if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model
|
||||
load_valuehead_params(model, model_args.checkpoint_dir[0])
|
||||
logger.warning("Only the last checkpoint containing valuehead will be loaded as the valuehead.")
|
||||
if load_valuehead_params(model, model_args.checkpoint_dir[-1]):
|
||||
model.v_head.load_state_dict({
|
||||
"summary.weight": getattr(model, "reward_head_weight"),
|
||||
"summary.bias": getattr(model, "reward_head_bias")
|
||||
|
@ -228,7 +229,7 @@ def load_pretrained(
|
|||
assert model_args.reward_model is not None, "Reward model is necessary for PPO training."
|
||||
logger.info("Load reward model from {}".format(model_args.reward_model))
|
||||
model.pretrained_model.load_adapter(model_args.reward_model, "reward", is_trainable=False)
|
||||
load_valuehead_params(model, model_args.reward_model)
|
||||
assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded."
|
||||
|
||||
if not is_trainable:
|
||||
model.requires_grad_(False) # fix all model params
|
||||
|
|
|
@ -126,21 +126,27 @@ def get_state_dict(model: torch.nn.Module) -> Dict[str, torch.Tensor]: # get sta
|
|||
return filtered_state_dict
|
||||
|
||||
|
||||
def load_trainable_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> None:
|
||||
def load_trainable_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> bool:
|
||||
weights_file = os.path.join(checkpoint_dir, WEIGHTS_NAME)
|
||||
assert os.path.exists(weights_file), f"Provided path ({checkpoint_dir}) does not contain the pretrained weights."
|
||||
if not os.path.exists(weights_file):
|
||||
logger.warning("Provided path ({}) does not contain pre-trained weights.".format(checkpoint_dir))
|
||||
return False
|
||||
model_state_dict = torch.load(weights_file, map_location="cpu")
|
||||
model.load_state_dict(model_state_dict, strict=False) # skip missing keys
|
||||
return True
|
||||
|
||||
|
||||
def load_valuehead_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> None:
|
||||
def load_valuehead_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> bool:
|
||||
valuehead_file = os.path.join(checkpoint_dir, VALUE_HEAD_FILE_NAME)
|
||||
assert os.path.exists(valuehead_file), f"Provided path ({checkpoint_dir}) does not contain the valuehead weights."
|
||||
if not os.path.exists(valuehead_file):
|
||||
logger.warning("Provided path ({}) does not contain valuehead weights.".format(checkpoint_dir))
|
||||
return False
|
||||
valuehead_state_dict = torch.load(valuehead_file, map_location="cpu")
|
||||
model.register_buffer("reward_head_weight", valuehead_state_dict["summary.weight"])
|
||||
model.register_buffer("reward_head_bias", valuehead_state_dict["summary.bias"])
|
||||
model.register_buffer("default_head_weight", torch.zeros_like(valuehead_state_dict["summary.weight"]))
|
||||
model.register_buffer("default_head_bias", torch.zeros_like(valuehead_state_dict["summary.bias"]))
|
||||
return True
|
||||
|
||||
|
||||
def smooth(scalars: List[float], weight: Optional[float] = 0.9) -> List[float]:
|
||||
|
|
Loading…
Reference in New Issue