support Qwen-7B, fix InternLM-7B inference
This commit is contained in:
parent
53d6dc396d
commit
87f8f830e2
|
@ -12,6 +12,8 @@
|
|||
|
||||
## Changelog
|
||||
|
||||
[23/08/03] Now we support training the **Qwen-7B** model in this repo. Try `--model_name_or_path Qwen/Qwen-7B-Chat` and `--lora_target c_attn` arguments to train the Qwen-7B model. Remember to use `--template chatml` argument when you are using the Qwen-7B-Chat model.
|
||||
|
||||
[23/07/31] Now we support dataset streaming. Try `--streaming` and `--max_steps 100` arguments to stream your dataset.
|
||||
|
||||
[23/07/29] We release two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/baichuan-13b-sft)) for details.
|
||||
|
@ -46,6 +48,7 @@
|
|||
- [Falcon](https://huggingface.co/tiiuae/falcon-7b) (7B/40B)
|
||||
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B) (7B/13B)
|
||||
- [InternLM](https://github.com/InternLM/InternLM) (7B)
|
||||
- [Qwen](https://github.com/QwenLM/Qwen-7B) (7B)
|
||||
|
||||
## Supported Training Approaches
|
||||
|
||||
|
@ -111,6 +114,7 @@ huggingface-cli login
|
|||
|
||||
- Python 3.8+ and PyTorch 1.13.1+
|
||||
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
|
||||
- sentencepiece and tiktoken
|
||||
- jieba, rouge-chinese and nltk (used at evaluation)
|
||||
- gradio and matplotlib (used in web_demo.py)
|
||||
- uvicorn, fastapi and sse-starlette (used in api_demo.py)
|
||||
|
@ -378,6 +382,7 @@ Please follow the model licenses to use the corresponding model weights:
|
|||
- [Falcon](LICENSE)
|
||||
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
|
||||
- [InternLM](https://github.com/InternLM/InternLM#open-source-license)
|
||||
- [Qwen](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE)
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
|
@ -12,6 +12,8 @@
|
|||
|
||||
## 更新日志
|
||||
|
||||
[23/08/03] 现在我们支持了 **Qwen-7B** 模型的训练。请尝试使用 `--model_name_or_path Qwen/Qwen-7B-Chat` 和 `--lora_target c_attn` 参数。请注意使用 Qwen-7B-Chat 模型需要添加 `--template chatml` 参数。
|
||||
|
||||
[23/07/31] 现在我们支持了训练数据流式加载。请尝试使用 `--streaming` 和 `--max_steps 100` 参数来流式加载数据集。
|
||||
|
||||
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/baichuan-13b-sft))。
|
||||
|
@ -20,7 +22,7 @@
|
|||
|
||||
[23/07/18] 我们开发了支持训练和测试的浏览器一键微调界面。请尝试使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力。
|
||||
|
||||
[23/07/11] 现在我们支持了 **Baichuan-13B** 模型的训练。请尝试使用 `--model_name_or_path path_to_baichuan_model` 和 `--lora_target W_pack` 参数。请注意使用 Baichuan-13B-Chat 模型需要添加 `--template baichuan` 参数。
|
||||
[23/07/11] 现在我们支持了 **Baichuan-13B** 模型的训练。请尝试使用 `--model_name_or_path baichuan-inc/Baichuan-13B-Base` 和 `--lora_target W_pack` 参数。请注意使用 Baichuan-13B-Chat 模型需要添加 `--template baichuan` 参数。
|
||||
|
||||
[23/07/09] 我们开源了 [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。
|
||||
|
||||
|
@ -46,6 +48,7 @@
|
|||
- [Falcon](https://huggingface.co/tiiuae/falcon-7b) (7B/40B)
|
||||
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B) (7B/13B)
|
||||
- [InternLM](https://github.com/InternLM/InternLM) (7B)
|
||||
- [Qwen](https://github.com/QwenLM/Qwen-7B) (7B)
|
||||
|
||||
## 微调方法
|
||||
|
||||
|
@ -111,6 +114,7 @@ huggingface-cli login
|
|||
|
||||
- Python 3.8+ 和 PyTorch 1.13.1+
|
||||
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
|
||||
- sentencepiece 和 tiktoken
|
||||
- jieba, rouge-chinese 和 nltk (用于评估)
|
||||
- gradio 和 matplotlib (用于网页端交互)
|
||||
- uvicorn, fastapi 和 sse-starlette (用于 API)
|
||||
|
@ -378,6 +382,7 @@ python src/export_model.py \
|
|||
- [Falcon](LICENSE)
|
||||
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
|
||||
- [InternLM](https://github.com/InternLM/InternLM#open-source-license)
|
||||
- [Qwen](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE)
|
||||
|
||||
## 引用
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ accelerate>=0.21.0
|
|||
peft>=0.4.0
|
||||
trl>=0.4.7
|
||||
sentencepiece
|
||||
tiktoken
|
||||
jieba
|
||||
rouge-chinese
|
||||
nltk
|
||||
|
|
|
@ -3,7 +3,7 @@ from typing import Any, Dict, Generator, List, Optional, Tuple
|
|||
from threading import Thread
|
||||
from transformers import TextIteratorStreamer
|
||||
|
||||
from llmtuner.extras.misc import dispatch_model, get_logits_processor
|
||||
from llmtuner.extras.misc import dispatch_model, get_logits_processor, get_stopwords_criteria
|
||||
from llmtuner.extras.template import get_template
|
||||
from llmtuner.tuner.core import get_infer_args, load_model_and_tokenizer
|
||||
|
||||
|
@ -16,6 +16,10 @@ class ChatModel:
|
|||
self.model = dispatch_model(self.model)
|
||||
self.template = get_template(data_args.template)
|
||||
self.source_prefix = data_args.source_prefix
|
||||
self.stop_ids = [
|
||||
self.tokenizer.encode(word, add_special_tokens=False)[0] for word in self.template.stop_words
|
||||
]
|
||||
self.tokenizer.add_special_tokens(dict(additional_special_tokens=self.template.stop_words))
|
||||
|
||||
def process_args(
|
||||
self,
|
||||
|
@ -47,7 +51,8 @@ class ChatModel:
|
|||
top_p=top_p or gen_kwargs["top_p"],
|
||||
top_k=top_k or gen_kwargs["top_k"],
|
||||
repetition_penalty=repetition_penalty or gen_kwargs["repetition_penalty"],
|
||||
logits_processor=get_logits_processor()
|
||||
logits_processor=get_logits_processor(),
|
||||
stopping_criteria=get_stopwords_criteria(self.stop_ids)
|
||||
))
|
||||
|
||||
if max_length:
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
import torch
|
||||
from typing import TYPE_CHECKING, List, Optional, Tuple
|
||||
|
||||
from transformers.generation.utils import LogitsProcessorList
|
||||
from transformers.generation.logits_process import LogitsProcessor
|
||||
from transformers import LogitsProcessor, LogitsProcessorList, StoppingCriteria, StoppingCriteriaList
|
||||
|
||||
from llmtuner.extras.constants import LAYERNORM_NAMES
|
||||
|
||||
|
@ -46,6 +45,22 @@ def get_logits_processor() -> LogitsProcessorList:
|
|||
return logits_processor
|
||||
|
||||
|
||||
class StopWordsCriteria(StoppingCriteria):
|
||||
|
||||
def __init__(self, stop_ids: List[int]) -> None:
|
||||
super().__init__()
|
||||
self.stop_ids = stop_ids
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
return any([stop_id in input_ids[:, -1] for stop_id in self.stop_ids])
|
||||
|
||||
|
||||
def get_stopwords_criteria(stop_ids: List[int]) -> StoppingCriteriaList:
|
||||
stopwords_criteria = StoppingCriteriaList()
|
||||
stopwords_criteria.append(StopWordsCriteria(stop_ids))
|
||||
return stopwords_criteria
|
||||
|
||||
|
||||
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
r"""
|
||||
Returns the number of trainable parameters and number of all parameters in the model.
|
||||
|
|
|
@ -9,6 +9,7 @@ class Template:
|
|||
prompt: str
|
||||
sep: str
|
||||
use_history: bool
|
||||
stop_words: List[str]
|
||||
|
||||
def get_prompt(
|
||||
self,
|
||||
|
@ -74,13 +75,16 @@ class Llama2Template(Template):
|
|||
templates: Dict[str, Template] = {}
|
||||
|
||||
|
||||
def register_template(name: str, prefix: str, prompt: str, sep: str, use_history: bool) -> None:
|
||||
def register_template(
|
||||
name: str, prefix: str, prompt: str, sep: str, use_history: bool, stop_words: List[str]
|
||||
) -> None:
|
||||
template_class = Llama2Template if name == "llama2" else Template
|
||||
templates[name] = template_class(
|
||||
prefix=prefix,
|
||||
prompt=prompt,
|
||||
sep=sep,
|
||||
use_history=use_history
|
||||
use_history=use_history,
|
||||
stop_words=stop_words
|
||||
)
|
||||
|
||||
|
||||
|
@ -98,7 +102,8 @@ register_template(
|
|||
prefix="",
|
||||
prompt="{query}",
|
||||
sep="",
|
||||
use_history=False
|
||||
use_history=False,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -111,7 +116,8 @@ register_template(
|
|||
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
||||
prompt="Human: {query}\nAssistant: ",
|
||||
sep="\n",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -132,7 +138,8 @@ register_template(
|
|||
"If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n",
|
||||
prompt="[INST] {query} [/INST] ",
|
||||
sep="<s>",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -146,7 +153,8 @@ register_template(
|
|||
"Write a response that appropriately completes the request.",
|
||||
prompt="### Instruction:\n{query}\n\n### Response:\n",
|
||||
sep="\n\n",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -160,7 +168,8 @@ register_template(
|
|||
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
||||
prompt="USER: {query} ASSISTANT: ",
|
||||
sep="",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -172,7 +181,8 @@ register_template(
|
|||
prefix="",
|
||||
prompt="Human: {query}\n\nBelle: ",
|
||||
sep="\n\n",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -184,7 +194,8 @@ register_template(
|
|||
prefix="",
|
||||
prompt="User: {query}\nBot: ",
|
||||
sep="\n",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -196,7 +207,8 @@ register_template(
|
|||
prefix="",
|
||||
prompt="Human: {query}\nAssistant: ",
|
||||
sep="\n",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -208,7 +220,8 @@ register_template(
|
|||
prefix="",
|
||||
prompt="<human>:{query}\n<bot>:",
|
||||
sep="\n",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -221,7 +234,8 @@ register_template(
|
|||
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
||||
prompt="Human: {query}###Assistant: ",
|
||||
sep="###",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -233,7 +247,8 @@ register_template(
|
|||
prefix="",
|
||||
prompt="<|User|>:{query}<eoh>\n<|Bot|>:",
|
||||
sep="<eoa>\n",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=["<eoa>"]
|
||||
)
|
||||
|
||||
|
||||
|
@ -245,7 +260,8 @@ register_template(
|
|||
prefix="",
|
||||
prompt="<reserved_102>{query}<reserved_103>",
|
||||
sep="",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=[]
|
||||
)
|
||||
|
||||
|
||||
|
@ -258,5 +274,19 @@ register_template(
|
|||
prefix="<|system|>\n",
|
||||
prompt="<|user|>\n{query}<|end|>\n<|assistant|>\n",
|
||||
sep="<|end|>\n",
|
||||
use_history=True
|
||||
use_history=True,
|
||||
stop_words=["<|end|>"]
|
||||
)
|
||||
|
||||
|
||||
r"""
|
||||
Supports: https://huggingface.co/Qwen/Qwen-7B-Chat
|
||||
"""
|
||||
register_template(
|
||||
name="chatml",
|
||||
prefix="<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n",
|
||||
prompt="<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n",
|
||||
sep="<|im_end|>\n",
|
||||
use_history=True,
|
||||
stop_words=["<|im_end|>"]
|
||||
)
|
||||
|
|
|
@ -19,7 +19,8 @@ class FinetuningArguments:
|
|||
LLaMA-2 choices: [\"32\", \"40\", \"80\"], \
|
||||
BLOOM choices: [\"24\", \"30\", \"70\"], \
|
||||
Falcon choices: [\"32\", \"60\"], \
|
||||
Baichuan choices: [\"32\", \"40\"]"}
|
||||
Baichuan choices: [\"32\", \"40\"] \
|
||||
Qwen choices: [\"32\"]"}
|
||||
)
|
||||
num_layer_trainable: Optional[int] = field(
|
||||
default=3,
|
||||
|
@ -30,7 +31,8 @@ class FinetuningArguments:
|
|||
metadata={"help": "Name of trainable modules for Freeze fine-tuning. \
|
||||
LLaMA & LLaMA-2 choices: [\"mlp\", \"self_attn\"], \
|
||||
BLOOM & Falcon choices: [\"mlp\", \"self_attention\"], \
|
||||
Baichuan choices: [\"mlp\", \"self_attn\"]"}
|
||||
Baichuan choices: [\"mlp\", \"self_attn\"], \
|
||||
Qwen choices: [\"attn\", \"mlp\"]"}
|
||||
)
|
||||
lora_rank: Optional[int] = field(
|
||||
default=8,
|
||||
|
@ -47,9 +49,10 @@ class FinetuningArguments:
|
|||
lora_target: Optional[str] = field(
|
||||
default="q_proj,v_proj",
|
||||
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
|
||||
LLaMA & LLaMA-2 choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
||||
LLaMA & LLaMA-2 & InternLM choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
||||
BLOOM & Falcon choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
|
||||
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"]"}
|
||||
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
||||
Qwen choices: [\"c_attn\", \"c_proj\", \"w1\", \"w2\"]"}
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
|
|
|
@ -67,7 +67,7 @@ def load_model_and_tokenizer(
|
|||
**config_kwargs
|
||||
)
|
||||
if tokenizer.pad_token_id is None or tokenizer.pad_token_id == 64000: # 64000 for baichuan model (older version)
|
||||
tokenizer.pad_token_id = 0 # set as the <unk> token
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||
is_mergeable = True
|
||||
|
|
Loading…
Reference in New Issue