diff --git a/scripts/cal_ppl.py b/scripts/cal_ppl.py index 2e74c70a..9eebc57d 100644 --- a/scripts/cal_ppl.py +++ b/scripts/cal_ppl.py @@ -4,7 +4,7 @@ import json from dataclasses import dataclass -from typing import Any, Dict, Literal, Sequence +from typing import Any, Dict, Literal, Optional, Sequence import fire import torch @@ -53,6 +53,7 @@ def cal_ppl( dataset_dir: str = "data", template: str = "default", cutoff_len: int = 1024, + max_samples: Optional[int] = None, train_on_prompt: bool = False, ): model_args, data_args, training_args, finetuning_args, _ = get_train_args( @@ -63,6 +64,7 @@ def cal_ppl( dataset_dir=dataset_dir, template=template, cutoff_len=cutoff_len, + max_samples=max_samples, train_on_prompt=train_on_prompt, output_dir="dummy_dir", overwrite_cache=True, diff --git a/src/llmtuner/webui/components/chatbot.py b/src/llmtuner/webui/components/chatbot.py index 0a55460c..f83694b1 100644 --- a/src/llmtuner/webui/components/chatbot.py +++ b/src/llmtuner/webui/components/chatbot.py @@ -36,9 +36,9 @@ def create_chat_box( submit_btn = gr.Button(variant="primary") with gr.Column(scale=1): - max_new_tokens = gr.Slider(8, 4096, value=512, step=1) - top_p = gr.Slider(0.01, 1.0, value=0.7, step=0.01) - temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01) + max_new_tokens = gr.Slider(minimum=8, maximum=4096, value=512, step=1) + top_p = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.01) + temperature = gr.Slider(minimum=0.01, maximum=1.5, value=0.95, step=0.01) clear_btn = gr.Button() tools.input(check_json_schema, inputs=[tools, engine.manager.get_elem_by_id("top.lang")]) diff --git a/src/llmtuner/webui/components/eval.py b/src/llmtuner/webui/components/eval.py index 60e22bb7..8b70283b 100644 --- a/src/llmtuner/webui/components/eval.py +++ b/src/llmtuner/webui/components/eval.py @@ -28,18 +28,18 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]: elem_dict.update(dict(dataset_dir=dataset_dir, dataset=dataset, **preview_elems)) with gr.Row(): - cutoff_len = gr.Slider(value=1024, minimum=4, maximum=65536, step=1) + cutoff_len = gr.Slider(minimum=4, maximum=65536, value=1024, step=1) max_samples = gr.Textbox(value="100000") - batch_size = gr.Slider(value=2, minimum=1, maximum=1024, step=1) + batch_size = gr.Slider(minimum=1, maximum=1024, value=2, step=1) predict = gr.Checkbox(value=True) input_elems.update({cutoff_len, max_samples, batch_size, predict}) elem_dict.update(dict(cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict)) with gr.Row(): - max_new_tokens = gr.Slider(10, 2048, value=128, step=1) - top_p = gr.Slider(0.01, 1, value=0.7, step=0.01) - temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01) + max_new_tokens = gr.Slider(minimum=8, maximum=4096, value=512, step=1) + top_p = gr.Slider(minimum=0.01, maximum=1, value=0.7, step=0.01) + temperature = gr.Slider(minimum=0.01, maximum=1.5, value=0.95, step=0.01) output_dir = gr.Textbox() input_elems.update({max_new_tokens, top_p, temperature, output_dir}) diff --git a/src/llmtuner/webui/components/export.py b/src/llmtuner/webui/components/export.py index 64273882..134b77e0 100644 --- a/src/llmtuner/webui/components/export.py +++ b/src/llmtuner/webui/components/export.py @@ -85,7 +85,7 @@ def save_model( def create_export_tab(engine: "Engine") -> Dict[str, "Component"]: with gr.Row(): - export_size = gr.Slider(value=1, minimum=1, maximum=100, step=1) + export_size = gr.Slider(minimum=1, maximum=100, value=1, step=1) export_quantization_bit = gr.Dropdown(choices=["none", "8", "4", "3", "2"], value="none") export_quantization_dataset = gr.Textbox(value="data/c4_demo.json") export_device = gr.Radio(choices=["cpu", "cuda"], value="cpu") diff --git a/src/llmtuner/webui/components/train.py b/src/llmtuner/webui/components/train.py index 857c56ac..5cde660c 100644 --- a/src/llmtuner/webui/components/train.py +++ b/src/llmtuner/webui/components/train.py @@ -52,10 +52,10 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: ) with gr.Row(): - cutoff_len = gr.Slider(value=1024, minimum=4, maximum=65536, step=1) - batch_size = gr.Slider(value=2, minimum=1, maximum=1024, step=1) - gradient_accumulation_steps = gr.Slider(value=8, minimum=1, maximum=1024, step=1) - val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001) + cutoff_len = gr.Slider(minimum=4, maximum=65536, value=1024, step=1) + batch_size = gr.Slider(minimum=1, maximum=1024, value=2, step=1) + gradient_accumulation_steps = gr.Slider(minimum=1, maximum=1024, value=8, step=1) + val_size = gr.Slider(minimum=0, maximum=1, value=0, step=0.001) lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine") input_elems.update({cutoff_len, batch_size, gradient_accumulation_steps, val_size, lr_scheduler_type}) @@ -71,10 +71,10 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: with gr.Accordion(open=False) as extra_tab: with gr.Row(): - logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5) - save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10) - warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1) - neftune_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1) + logging_steps = gr.Slider(minimum=1, maximum=1000, value=5, step=5) + save_steps = gr.Slider(minimum=10, maximum=5000, value=100, step=10) + warmup_steps = gr.Slider(minimum=0, maximum=5000, value=0, step=1) + neftune_alpha = gr.Slider(minimum=0, maximum=10, value=0, step=0.1) optim = gr.Textbox(value="adamw_torch") with gr.Row(): @@ -124,7 +124,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: with gr.Accordion(open=False) as freeze_tab: with gr.Row(): - num_layer_trainable = gr.Slider(value=3, minimum=1, maximum=128, step=1) + num_layer_trainable = gr.Slider(minimum=1, maximum=128, value=2, step=1) name_module_trainable = gr.Textbox(value="all") input_elems.update({num_layer_trainable, name_module_trainable}) @@ -136,10 +136,10 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: with gr.Accordion(open=False) as lora_tab: with gr.Row(): - lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1) - lora_alpha = gr.Slider(value=16, minimum=1, maximum=2048, step=1) - lora_dropout = gr.Slider(value=0, minimum=0, maximum=1, step=0.01) - loraplus_lr_ratio = gr.Slider(value=0, minimum=0, maximum=64, step=0.01) + lora_rank = gr.Slider(minimum=1, maximum=1024, value=8, step=1) + lora_alpha = gr.Slider(minimum=1, maximum=2048, value=16, step=1) + lora_dropout = gr.Slider(minimum=0, maximum=1, value=0, step=0.01) + loraplus_lr_ratio = gr.Slider(minimum=0, maximum=64, value=0, step=0.01) create_new_adapter = gr.Checkbox() with gr.Row(): @@ -180,9 +180,9 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: with gr.Accordion(open=False) as rlhf_tab: with gr.Row(): - dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01) - dpo_ftx = gr.Slider(value=0, minimum=0, maximum=10, step=0.01) - orpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01) + dpo_beta = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.01) + dpo_ftx = gr.Slider(minimum=0, maximum=10, value=0, step=0.01) + orpo_beta = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.01) reward_model = gr.Dropdown(multiselect=True, allow_custom_value=True) input_elems.update({dpo_beta, dpo_ftx, orpo_beta, reward_model}) @@ -193,9 +193,9 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: with gr.Accordion(open=False) as galore_tab: with gr.Row(): use_galore = gr.Checkbox() - galore_rank = gr.Slider(value=16, minimum=1, maximum=1024, step=1) - galore_update_interval = gr.Slider(value=200, minimum=1, maximum=1024, step=1) - galore_scale = gr.Slider(value=0.25, minimum=0, maximum=1, step=0.01) + galore_rank = gr.Slider(minimum=1, maximum=1024, value=16, step=1) + galore_update_interval = gr.Slider(minimum=1, maximum=1024, value=200, step=1) + galore_scale = gr.Slider(minimum=0, maximum=1, value=0.25, step=0.01) galore_target = gr.Textbox(value="all") input_elems.update({use_galore, galore_rank, galore_update_interval, galore_scale, galore_target}) @@ -215,8 +215,8 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: use_badam = gr.Checkbox() badam_mode = gr.Dropdown(choices=["layer", "ratio"], value="layer") badam_switch_mode = gr.Dropdown(choices=["ascending", "descending", "random", "fixed"], value="ascending") - badam_switch_interval = gr.Slider(value=50, minimum=1, maximum=1024, step=1) - badam_update_ratio = gr.Slider(value=0.05, minimum=0, maximum=1, step=0.01) + badam_switch_interval = gr.Slider(minimum=1, maximum=1024, value=50, step=1) + badam_update_ratio = gr.Slider(minimum=0, maximum=1, value=0.05, step=0.01) input_elems.update({use_badam, badam_mode, badam_switch_mode, badam_switch_interval, badam_update_ratio}) elem_dict.update(