update web UI, support rm predict #210
This commit is contained in:
parent
4c45a3a884
commit
ed0e186a13
|
@ -143,8 +143,10 @@ def preprocess_dataset(
|
|||
if stage == "pt":
|
||||
preprocess_function = preprocess_pretrain_dataset
|
||||
elif stage == "sft":
|
||||
preprocess_function = preprocess_unsupervised_dataset \
|
||||
if training_args.predict_with_generate else preprocess_supervised_dataset
|
||||
if not training_args.predict_with_generate:
|
||||
preprocess_function = preprocess_supervised_dataset
|
||||
else:
|
||||
preprocess_function = preprocess_unsupervised_dataset
|
||||
elif stage == "rm":
|
||||
preprocess_function = preprocess_pairwise_dataset
|
||||
elif stage == "ppo":
|
||||
|
|
|
@ -54,7 +54,7 @@ def get_train_args(
|
|||
assert not (training_args.do_train and training_args.predict_with_generate), \
|
||||
"`predict_with_generate` cannot be set as True while training."
|
||||
|
||||
assert (not training_args.do_predict) or training_args.predict_with_generate, \
|
||||
assert general_args.stage != "sft" or (not training_args.do_predict) or training_args.predict_with_generate, \
|
||||
"Please enable `predict_with_generate` to save model predictions."
|
||||
|
||||
assert model_args.quantization_bit is None or finetuning_args.finetuning_type == "lora", \
|
||||
|
|
|
@ -4,7 +4,8 @@ from typing import Dict, Optional
|
|||
|
||||
from transformers import Seq2SeqTrainer
|
||||
from transformers.trainer import TRAINING_ARGS_NAME
|
||||
from transformers.modeling_utils import unwrap_model
|
||||
from transformers.modeling_utils import PreTrainedModel, unwrap_model
|
||||
from peft import PeftModel
|
||||
|
||||
from llmtuner.extras.constants import FINETUNING_ARGS_NAME, VALUE_HEAD_FILE_NAME
|
||||
from llmtuner.extras.logging import get_logger
|
||||
|
@ -49,9 +50,9 @@ class PeftTrainer(Seq2SeqTrainer):
|
|||
else:
|
||||
backbone_model = model
|
||||
|
||||
if self.finetuning_args.finetuning_type == "lora":
|
||||
if isinstance(backbone_model, PeftModel): # LoRA tuning
|
||||
backbone_model.save_pretrained(output_dir, state_dict=get_state_dict(backbone_model))
|
||||
else: # freeze/full tuning
|
||||
elif isinstance(backbone_model, PreTrainedModel): # freeze/full tuning
|
||||
backbone_model.config.use_cache = True
|
||||
backbone_model.save_pretrained(
|
||||
output_dir,
|
||||
|
@ -61,6 +62,8 @@ class PeftTrainer(Seq2SeqTrainer):
|
|||
backbone_model.config.use_cache = False
|
||||
if self.tokenizer is not None:
|
||||
self.tokenizer.save_pretrained(output_dir)
|
||||
else:
|
||||
logger.warning("No model to save.")
|
||||
|
||||
with open(os.path.join(output_dir, TRAINING_ARGS_NAME), "w", encoding="utf-8") as f:
|
||||
f.write(self.args.to_json_string() + "\n")
|
||||
|
@ -77,8 +80,8 @@ class PeftTrainer(Seq2SeqTrainer):
|
|||
model = unwrap_model(self.model)
|
||||
backbone_model = getattr(model, "pretrained_model") if hasattr(model, "pretrained_model") else model
|
||||
|
||||
if self.finetuning_args.finetuning_type == "lora":
|
||||
backbone_model.load_adapter(self.state.best_model_checkpoint, getattr(backbone_model, "active_adapter"))
|
||||
if isinstance(backbone_model, PeftModel):
|
||||
backbone_model.load_adapter(self.state.best_model_checkpoint, backbone_model.active_adapter)
|
||||
if hasattr(model, "v_head") and load_valuehead_params(model, self.state.best_model_checkpoint):
|
||||
model.v_head.load_state_dict({
|
||||
"summary.weight": getattr(model, "reward_head_weight"),
|
||||
|
|
|
@ -1,10 +1,17 @@
|
|||
import os
|
||||
import json
|
||||
import torch
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
from transformers.trainer import PredictionOutput
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
|
||||
from llmtuner.extras.logging import get_logger
|
||||
from llmtuner.tuner.core.trainer import PeftTrainer
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class PairwisePeftTrainer(PeftTrainer):
|
||||
r"""
|
||||
Inherits PeftTrainer to compute pairwise loss.
|
||||
|
@ -36,3 +43,26 @@ class PairwisePeftTrainer(PeftTrainer):
|
|||
r_accept, r_reject = values[:, -1].split(batch_size, dim=0)
|
||||
loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean()
|
||||
return (loss, [loss, r_accept, r_reject]) if return_outputs else loss
|
||||
|
||||
def save_predictions(
|
||||
self,
|
||||
predict_results: PredictionOutput
|
||||
) -> None:
|
||||
r"""
|
||||
Saves model predictions to `output_dir`.
|
||||
|
||||
A custom behavior that not contained in Seq2SeqTrainer.
|
||||
"""
|
||||
if not self.is_world_process_zero():
|
||||
return
|
||||
|
||||
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
|
||||
logger.info(f"Saving prediction results to {output_prediction_file}")
|
||||
|
||||
acc_scores, rej_scores = predict_results.predictions
|
||||
|
||||
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
||||
res: List[str] = []
|
||||
for acc_score, rej_score in zip(acc_scores, rej_scores):
|
||||
res.append(json.dumps({"accept": round(float(acc_score), 2), "reject": round(float(rej_score), 2)}))
|
||||
writer.write("\n".join(res))
|
||||
|
|
|
@ -56,3 +56,10 @@ def run_rm(
|
|||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict")
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
trainer.save_predictions(predict_results)
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from llmtuner.webui.components.eval import create_eval_tab
|
||||
from llmtuner.webui.components.infer import create_infer_tab
|
||||
from llmtuner.webui.components.top import create_top
|
||||
from llmtuner.webui.components.sft import create_sft_tab
|
||||
from llmtuner.webui.components.eval import create_eval_tab
|
||||
from llmtuner.webui.components.infer import create_infer_tab
|
||||
from llmtuner.webui.components.export import create_export_tab
|
||||
|
|
|
@ -22,13 +22,9 @@ def create_chat_box(
|
|||
|
||||
with gr.Column(scale=1):
|
||||
clear_btn = gr.Button()
|
||||
max_new_tokens = gr.Slider(
|
||||
10, 2048, value=chat_model.generating_args.max_new_tokens, step=1, interactive=True
|
||||
)
|
||||
top_p = gr.Slider(0.01, 1, value=chat_model.generating_args.top_p, step=0.01, interactive=True)
|
||||
temperature = gr.Slider(
|
||||
0.01, 1.5, value=chat_model.generating_args.temperature, step=0.01, interactive=True
|
||||
)
|
||||
max_new_tokens = gr.Slider(10, 2048, value=chat_model.generating_args.max_new_tokens, step=1)
|
||||
top_p = gr.Slider(0.01, 1, value=chat_model.generating_args.top_p, step=0.01)
|
||||
temperature = gr.Slider(0.01, 1.5, value=chat_model.generating_args.temperature, step=0.01)
|
||||
|
||||
history = gr.State([])
|
||||
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
from typing import Dict
|
||||
import gradio as gr
|
||||
from gradio.components import Component
|
||||
|
||||
from llmtuner.webui.utils import export_model
|
||||
|
||||
|
||||
def create_export_tab(top_elems: Dict[str, Component]) -> Dict[str, Component]:
|
||||
with gr.Row():
|
||||
save_dir = gr.Textbox()
|
||||
max_shard_size = gr.Slider(value=10, minimum=1, maximum=100)
|
||||
|
||||
export_btn = gr.Button()
|
||||
info_box = gr.Textbox(show_label=False, interactive=False)
|
||||
|
||||
export_btn.click(
|
||||
export_model,
|
||||
[
|
||||
top_elems["lang"],
|
||||
top_elems["model_name"],
|
||||
top_elems["checkpoints"],
|
||||
top_elems["finetuning_type"],
|
||||
max_shard_size,
|
||||
save_dir
|
||||
],
|
||||
[info_box]
|
||||
)
|
||||
|
||||
return dict(
|
||||
save_dir=save_dir,
|
||||
max_shard_size=max_shard_size,
|
||||
export_btn=export_btn,
|
||||
info_box=info_box
|
||||
)
|
|
@ -57,7 +57,7 @@ def create_sft_tab(top_elems: Dict[str, Component], runner: Runner) -> Dict[str,
|
|||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=4):
|
||||
output_dir = gr.Textbox(interactive=True)
|
||||
output_dir = gr.Textbox()
|
||||
|
||||
with gr.Box():
|
||||
output_box = gr.Markdown()
|
||||
|
|
|
@ -5,7 +5,8 @@ from llmtuner.webui.components import (
|
|||
create_top,
|
||||
create_sft_tab,
|
||||
create_eval_tab,
|
||||
create_infer_tab
|
||||
create_infer_tab,
|
||||
create_export_tab
|
||||
)
|
||||
from llmtuner.webui.css import CSS
|
||||
from llmtuner.webui.manager import Manager
|
||||
|
@ -30,7 +31,10 @@ def create_ui() -> gr.Blocks:
|
|||
with gr.Tab("Chat"):
|
||||
infer_elems = create_infer_tab(top_elems)
|
||||
|
||||
elem_list = [top_elems, sft_elems, eval_elems, infer_elems]
|
||||
with gr.Tab("Export"):
|
||||
export_elems = create_export_tab(top_elems)
|
||||
|
||||
elem_list = [top_elems, sft_elems, eval_elems, infer_elems, export_elems]
|
||||
manager = Manager(elem_list)
|
||||
|
||||
demo.load(
|
||||
|
|
|
@ -452,6 +452,34 @@ LOCALES = {
|
|||
"zh": {
|
||||
"label": "温度系数"
|
||||
}
|
||||
},
|
||||
"save_dir": {
|
||||
"en": {
|
||||
"label": "Export dir",
|
||||
"info": "Directory to save exported model."
|
||||
},
|
||||
"zh": {
|
||||
"label": "导出目录",
|
||||
"info": "保存导出模型的文件夹路径。"
|
||||
}
|
||||
},
|
||||
"max_shard_size": {
|
||||
"en": {
|
||||
"label": "Max shard size (GB)",
|
||||
"info": "The maximum size for a model file."
|
||||
},
|
||||
"zh": {
|
||||
"label": "最大分块大小(GB)",
|
||||
"info": "模型文件的最大大小。"
|
||||
}
|
||||
},
|
||||
"export_btn": {
|
||||
"en": {
|
||||
"value": "Export"
|
||||
},
|
||||
"zh": {
|
||||
"value": "开始导出"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -477,6 +505,14 @@ ALERTS = {
|
|||
"en": "Please choose a dataset.",
|
||||
"zh": "请选择数据集。"
|
||||
},
|
||||
"err_no_checkpoint": {
|
||||
"en": "Please select a checkpoint.",
|
||||
"zh": "请选择断点。"
|
||||
},
|
||||
"err_no_save_dir": {
|
||||
"en": "Please provide export dir.",
|
||||
"zh": "请填写导出目录"
|
||||
},
|
||||
"info_aborting": {
|
||||
"en": "Aborted, wait for terminating...",
|
||||
"zh": "训练中断,正在等待线程结束……"
|
||||
|
@ -504,5 +540,13 @@ ALERTS = {
|
|||
"info_unloaded": {
|
||||
"en": "Model unloaded.",
|
||||
"zh": "模型已卸载。"
|
||||
},
|
||||
"info_exporting": {
|
||||
"en": "Exporting model...",
|
||||
"zh": "正在导出模型……"
|
||||
},
|
||||
"info_exported": {
|
||||
"en": "Model exported.",
|
||||
"zh": "模型导出完成。"
|
||||
}
|
||||
}
|
||||
|
|
|
@ -3,7 +3,7 @@ import os
|
|||
import threading
|
||||
import time
|
||||
import transformers
|
||||
from typing import List, Optional, Tuple
|
||||
from typing import Generator, List, Optional, Tuple
|
||||
|
||||
from llmtuner.extras.callbacks import LogCallback
|
||||
from llmtuner.extras.constants import DEFAULT_MODULE
|
||||
|
@ -25,7 +25,9 @@ class Runner:
|
|||
self.aborted = True
|
||||
self.running = False
|
||||
|
||||
def initialize(self, lang: str, model_name: str, dataset: list) -> Tuple[str, str, LoggerHandler, LogCallback]:
|
||||
def initialize(
|
||||
self, lang: str, model_name: str, dataset: list
|
||||
) -> Tuple[str, str, LoggerHandler, LogCallback]:
|
||||
if self.running:
|
||||
return None, ALERTS["err_conflict"][lang], None, None
|
||||
|
||||
|
@ -50,7 +52,9 @@ class Runner:
|
|||
|
||||
return model_name_or_path, "", logger_handler, trainer_callback
|
||||
|
||||
def finalize(self, lang: str, finish_info: Optional[str] = None) -> str:
|
||||
def finalize(
|
||||
self, lang: str, finish_info: Optional[str] = None
|
||||
) -> str:
|
||||
self.running = False
|
||||
torch_gc()
|
||||
if self.aborted:
|
||||
|
@ -87,7 +91,7 @@ class Runner:
|
|||
lora_dropout: float,
|
||||
lora_target: str,
|
||||
output_dir: str
|
||||
):
|
||||
) -> Generator[str, None, None]:
|
||||
model_name_or_path, error, logger_handler, trainer_callback = self.initialize(lang, model_name, dataset)
|
||||
if error:
|
||||
yield error
|
||||
|
@ -174,7 +178,7 @@ class Runner:
|
|||
max_samples: str,
|
||||
batch_size: int,
|
||||
predict: bool
|
||||
):
|
||||
) -> Generator[str, None, None]:
|
||||
model_name_or_path, error, logger_handler, trainer_callback = self.initialize(lang, model_name, dataset)
|
||||
if error:
|
||||
yield error
|
||||
|
|
|
@ -3,11 +3,13 @@ import json
|
|||
import gradio as gr
|
||||
import matplotlib.figure
|
||||
import matplotlib.pyplot as plt
|
||||
from typing import Any, Dict, Tuple
|
||||
from typing import Any, Dict, Generator, List, Tuple
|
||||
from datetime import datetime
|
||||
|
||||
from llmtuner.extras.ploting import smooth
|
||||
from llmtuner.webui.common import get_save_dir, DATA_CONFIG
|
||||
from llmtuner.tuner import get_infer_args, load_model_and_tokenizer
|
||||
from llmtuner.webui.common import get_model_path, get_save_dir, DATA_CONFIG
|
||||
from llmtuner.webui.locales import ALERTS
|
||||
|
||||
|
||||
def format_info(log: str, tracker: dict) -> str:
|
||||
|
@ -83,3 +85,41 @@ def gen_plot(base_model: str, finetuning_type: str, output_dir: str) -> matplotl
|
|||
ax.set_xlabel("step")
|
||||
ax.set_ylabel("loss")
|
||||
return fig
|
||||
|
||||
|
||||
def export_model(
|
||||
lang: str, model_name: str, checkpoints: List[str], finetuning_type: str, max_shard_size: int, save_dir: str
|
||||
) -> Generator[str, None, None]:
|
||||
if not model_name:
|
||||
yield ALERTS["err_no_model"][lang]
|
||||
return
|
||||
|
||||
model_name_or_path = get_model_path(model_name)
|
||||
if not model_name_or_path:
|
||||
yield ALERTS["err_no_path"][lang]
|
||||
return
|
||||
|
||||
if not checkpoints:
|
||||
yield ALERTS["err_no_checkpoint"][lang]
|
||||
return
|
||||
|
||||
checkpoint_dir = ",".join(
|
||||
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
|
||||
)
|
||||
|
||||
if not save_dir:
|
||||
yield ALERTS["err_no_save_dir"][lang]
|
||||
return
|
||||
|
||||
args = dict(
|
||||
model_name_or_path=model_name_or_path,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
finetuning_type=finetuning_type
|
||||
)
|
||||
|
||||
yield ALERTS["info_exporting"][lang]
|
||||
model_args, _, finetuning_args, _ = get_infer_args(args)
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
||||
model.save_pretrained(save_dir, max_shard_size=str(max_shard_size)+"GB")
|
||||
tokenizer.save_pretrained(save_dir)
|
||||
yield ALERTS["info_exported"][lang]
|
||||
|
|
Loading…
Reference in New Issue