# coding=utf-8 # Calculates the distribution of the input lengths in the dataset. # Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default from collections import defaultdict from typing import Optional import fire from tqdm import tqdm from llmtuner.data import get_dataset from llmtuner.hparams import get_train_args from llmtuner.model import load_tokenizer def length_cdf( model_name_or_path: str, dataset: Optional[str] = "alpaca_en", dataset_dir: Optional[str] = "data", template: Optional[str] = "default", interval: Optional[int] = 1000, ): model_args, data_args, training_args, _, _ = get_train_args( dict( stage="sft", model_name_or_path=model_name_or_path, dataset=dataset, dataset_dir=dataset_dir, template=template, cutoff_len=1_000_000, output_dir="dummy_dir", overwrite_cache=True, ) ) tokenizer = load_tokenizer(model_args) trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft") total_num = len(trainset) length_dict = defaultdict(int) for sample in tqdm(trainset["input_ids"]): length_dict[len(sample) // interval * interval] += 1 length_tuples = list(length_dict.items()) length_tuples.sort() count_accu, prob_accu = 0, 0 for length, count in length_tuples: count_accu += count prob_accu += count / total_num * 100 print("{:d} ({:.2f}%) samples have length < {}.".format(count_accu, prob_accu, length + interval)) if __name__ == "__main__": fire.Fire(length_cdf)