# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from llamafactory.model.model_utils.packing import get_seqlens_in_batch, get_unpad_data def test_get_seqlens_in_batch(): attention_mask_with_indices = torch.tensor( [ [1, 1, 2, 2, 2, 0], [1, 2, 2, 3, 3, 3], ] ) seqlens_in_batch = get_seqlens_in_batch(attention_mask_with_indices) assert list(seqlens_in_batch.size()) == [5] assert torch.all(seqlens_in_batch == torch.tensor([2, 3, 1, 2, 3])) attention_mask_with_indices = torch.tensor([[1, 1, 1]]) seqlens_in_batch = get_seqlens_in_batch(attention_mask_with_indices) assert list(seqlens_in_batch.size()) == [1] assert torch.all(seqlens_in_batch == torch.tensor([3])) def test_get_unpad_data(): attention_mask_with_indices = torch.tensor( [ [1, 1, 2, 2, 2, 0], [1, 2, 2, 3, 3, 3], ] ) indices, cu_seqlens, max_seqlen_in_batch = get_unpad_data(attention_mask_with_indices) assert torch.all(indices == torch.tensor([0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11])) assert torch.all(cu_seqlens == torch.tensor([0, 2, 5, 6, 8, 11], dtype=torch.int32)) assert max_seqlen_in_batch == 3 attention_mask_with_indices = torch.tensor([[1, 1, 1]]) indices, cu_seqlens, max_seqlen_in_batch = get_unpad_data(attention_mask_with_indices) assert torch.all(indices == torch.tensor([0, 1, 2])) assert torch.all(cu_seqlens == torch.tensor([0, 3], dtype=torch.int32)) assert max_seqlen_in_batch == 3