# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available from llamafactory.hparams import get_infer_args from llamafactory.model import load_model, load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") INFER_ARGS = { "model_name_or_path": TINY_LLAMA, "template": "llama3", } def test_attention(): attention_available = ["off"] if is_torch_sdpa_available(): attention_available.append("sdpa") if is_flash_attn_2_available(): attention_available.append("fa2") llama_attention_classes = { "off": "LlamaAttention", "sdpa": "LlamaSdpaAttention", "fa2": "LlamaFlashAttention2", } for requested_attention in attention_available: model_args, _, finetuning_args, _ = get_infer_args({"flash_attn": requested_attention, **INFER_ARGS}) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args) for module in model.modules(): if "Attention" in module.__class__.__name__: assert module.__class__.__name__ == llama_attention_classes[requested_attention]