# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from llamafactory.extras.misc import get_current_device from llamafactory.hparams import get_train_args from llamafactory.model import load_model, load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "lora", "lora_target": "all", "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } def test_checkpointing_enable(): model_args, _, _, finetuning_args, _ = get_train_args({"disable_gradient_checkpointing": False, **TRAIN_ARGS}) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()): assert getattr(module, "gradient_checkpointing") is True def test_checkpointing_disable(): model_args, _, _, finetuning_args, _ = get_train_args({"disable_gradient_checkpointing": True, **TRAIN_ARGS}) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()): assert getattr(module, "gradient_checkpointing") is False def test_upcast_layernorm(): model_args, _, _, finetuning_args, _ = get_train_args({"upcast_layernorm": True, **TRAIN_ARGS}) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) for name, param in model.named_parameters(): if param.ndim == 1 and "norm" in name: assert param.dtype == torch.float32 def test_upcast_lmhead_output(): model_args, _, _, finetuning_args, _ = get_train_args({"upcast_lmhead_output": True, **TRAIN_ARGS}) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) inputs = torch.randn((1, 16), dtype=torch.float16, device=get_current_device()) outputs: "torch.Tensor" = model.lm_head(inputs) assert outputs.dtype == torch.float32