# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict import pytest import torch from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead from llamafactory.extras.misc import get_current_device from llamafactory.hparams import get_infer_args from llamafactory.model import load_model, load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") INFER_ARGS = { "model_name_or_path": TINY_LLAMA, "template": "llama3", "infer_dtype": "float16", } def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"): state_dict_a = model_a.state_dict() state_dict_b = model_b.state_dict() assert set(state_dict_a.keys()) == set(state_dict_b.keys()) for name in state_dict_a.keys(): assert torch.allclose(state_dict_a[name], state_dict_b[name]) is True @pytest.fixture def fix_valuehead_cpu_loading(): def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]): state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")} self.v_head.load_state_dict(state_dict, strict=False) del state_dict AutoModelForCausalLMWithValueHead.post_init = post_init def test_base(): model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) ref_model = AutoModelForCausalLM.from_pretrained( TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device() ) compare_model(model, ref_model) @pytest.mark.usefixtures("fix_valuehead_cpu_loading") def test_valuehead(): model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model( tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False, add_valuehead=True ) ref_model = AutoModelForCausalLMWithValueHead.from_pretrained( TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device() ) compare_model(model, ref_model)