# model model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct # method stage: sft do_train: true finetuning_type: full use_badam: true badam_switch_mode: descending badam_switch_interval: 50 badam_verbose: 2 # dataset dataset: identity,alpaca_gpt4_en template: llama3 cutoff_len: 1024 max_samples: 1000 val_size: 0.1 overwrite_cache: true preprocessing_num_workers: 16 # output output_dir: saves/llama3-8b/full/sft logging_steps: 10 save_steps: 500 plot_loss: true overwrite_output_dir: true # train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 0.0001 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_steps: 0.1 pure_bf16: true # eval per_device_eval_batch_size: 1 evaluation_strategy: steps eval_steps: 500