# Use the NVIDIA official image with PyTorch 2.3.0 # https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-02.html FROM nvcr.io/nvidia/pytorch:24.02-py3 # Define installation arguments ARG INSTALL_BNB=false ARG INSTALL_VLLM=false ARG INSTALL_DEEPSPEED=false ARG PIP_INDEX=https://pypi.org/simple # Set the working directory WORKDIR /app # Install the requirements COPY requirements.txt /app RUN pip config set global.index-url $PIP_INDEX RUN pip config set global.extra-index-url $PIP_INDEX RUN python -m pip install --upgrade pip RUN python -m pip install -r requirements.txt # Copy the rest of the application into the image COPY . /app # Install the LLaMA Factory RUN EXTRA_PACKAGES="metrics"; \ if [ "$INSTALL_BNB" = "true" ]; then \ EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes"; \ fi; \ if [ "$INSTALL_VLLM" = "true" ]; then \ EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm"; \ fi; \ if [ "$INSTALL_DEEPSPEED" = "true" ]; then \ EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \ fi; \ pip install -e .[$EXTRA_PACKAGES] && \ pip uninstall -y transformer-engine flash-attn # Set up volumes VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ] # Expose port 7860 for the LLaMA Board ENV GRADIO_SERVER_PORT 7860 EXPOSE 7860 # Expose port 8000 for the API service ENV API_PORT 8000 EXPOSE 8000