LLaMA-Factory/data/ultra_chat/ultra_chat.py

72 lines
2.5 KiB
Python

import os
import json
import datasets
from typing import List
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
_CITATION = """\
@misc{UltraChat,
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and Qin, Yujia and Liu, Zhiyuan and Sun, Maosong and Zhou, Bowen},
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/thunlp/ultrachat}},
}
"""
_HOMEPAGE = "{}/datasets/stingning/ultrachat".format(_HF_ENDPOINT)
_LICENSE = "cc-by-nc-4.0"
_BASE_DATA_URL = "{}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl".format(_HF_ENDPOINT)
class UltraChat(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self):
features = datasets.Features({
"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": file_paths
}
)
]
def _generate_examples(self, filepaths: List[str]):
for filepath in filepaths:
with open(filepath, "r", encoding="utf-8") as f:
for row in f:
try:
data = json.loads(row)
except:
continue
key: int = data["id"]
content: List[str] = data["data"]
if len(content) % 2 == 1:
content.pop(-1)
if len(content) < 2:
continue
conversations = [{
"from": "human" if i % 2 == 0 else "gpt",
"value": content[i]
} for i in range(len(content))]
yield key, {"conversations": conversations}