198 lines
5.6 KiB
Markdown
198 lines
5.6 KiB
Markdown
# LLaMA Efficient Tuning
|
|
|
|
![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)
|
|
![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Efficient-Tuning)
|
|
![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning)
|
|
![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)
|
|
|
|
## Requirement
|
|
|
|
- Python 3.8+ and PyTorch 1.13.1
|
|
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
|
|
- protobuf, cpm_kernels and sentencepiece
|
|
- jieba, rouge_chinese and nltk (used at evaluation)
|
|
- gradio and mdtex2html (used in web_demo.py)
|
|
|
|
And **powerful GPUs**!
|
|
|
|
## Getting Started
|
|
|
|
### Data Preparation (optional)
|
|
|
|
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
|
|
|
|
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
|
|
|
|
### Dependence Installation (optional)
|
|
|
|
```bash
|
|
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
|
|
conda create -n llama_etuning python=3.10
|
|
conda activate llama_etuning
|
|
cd LLaMA-Efficient-Tuning
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
### LLaMA Weights Preparation
|
|
|
|
1. Download the weights of the LLaMA models.
|
|
2. Convert them to HF format using this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
|
|
|
|
```python
|
|
python convert_llama_weights_to_hf.py \
|
|
--input_dir path_to_llama_weights --model_size 7B --output_dir path_to_llama_model
|
|
```
|
|
|
|
### (Continually) Pre-Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_pt.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset wiki_demo \
|
|
--finetuning_type lora \
|
|
--output_dir path_to_pt_checkpoint \
|
|
--overwrite_cache \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 5e-5 \
|
|
--num_train_epochs 3.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### Supervised Fine-Tuning
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset alpaca_gpt4_en \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_pt_checkpoint \
|
|
--output_dir path_to_sft_checkpoint \
|
|
--overwrite_cache \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 5e-5 \
|
|
--num_train_epochs 3.0 \
|
|
--resume_lora_training False \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### Reward Model Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_rm.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset comparison_gpt4_en \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_pt_checkpoint \
|
|
--output_dir path_to_rm_checkpoint \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-5 \
|
|
--num_train_epochs 1.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### PPO Training (RLHF)
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_ppo.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_train \
|
|
--dataset alpaca_gpt4_en \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_pt_checkpoint,path_to_sft_checkpoint \
|
|
--reward_model path_to_rm_checkpoint \
|
|
--output_dir path_to_ppo_checkpoint \
|
|
--per_device_train_batch_size 2 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-5 \
|
|
--num_train_epochs 1.0 \
|
|
--resume_lora_training False \
|
|
--plot_loss
|
|
```
|
|
|
|
### Distributed Training
|
|
|
|
```bash
|
|
accelerate config # configure the environment
|
|
accelerate launch src/train_XX.py # arguments (same as above)
|
|
```
|
|
|
|
### Evaluation (BLEU and ROUGE_CHINESE)
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--do_eval \
|
|
--dataset alpaca_gpt4_en \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--output_dir path_to_eval_result \
|
|
--per_device_eval_batch_size 8 \
|
|
--max_samples 50 \
|
|
--predict_with_generate
|
|
```
|
|
|
|
### CLI Demo
|
|
|
|
```bash
|
|
python src/cli_demo.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
### Web Demo
|
|
```bash
|
|
python src/web_demo.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
### Export model
|
|
|
|
```bash
|
|
python src/export_model.py \
|
|
--model_name_or_path path_to_llama_model \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--output_dir path_to_export
|
|
```
|
|
|
|
## License
|
|
|
|
This repository is licensed under the [Apache-2.0 License](LICENSE). Please follow the [Model Card](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) to use the LLaMA model.
|
|
|
|
## Citation
|
|
|
|
If this work is helpful, please cite as:
|
|
|
|
```bibtex
|
|
@Misc{llama-efficient-tuning,
|
|
title = {LLaMA Efficient Tuning},
|
|
author = {hiyouga},
|
|
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
|
|
year = {2023}
|
|
}
|
|
```
|
|
|
|
## Acknowledgement
|
|
|
|
This repo is a sibling of [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). They share a similar code structure of efficient tuning on large language models.
|