LLaMA-Factory/scripts/llama_pro.py

132 lines
4.8 KiB
Python

# coding=utf-8
# Copyright 2024 Tencent Inc. and the LlamaFactory team.
#
# This code is inspired by the Tencent's LLaMA-Pro library.
# https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from collections import OrderedDict
from typing import TYPE_CHECKING
import fire
import torch
from safetensors.torch import save_file
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.modeling_utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
shard_checkpoint,
)
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedModel
def change_name(name: str, old_index: int, new_index: int) -> str:
return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index))
def block_expansion(
model_name_or_path: str,
output_dir: str,
num_expand: int,
shard_size: str = "2GB",
save_safetensors: bool = True,
):
r"""
Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
"""
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)
num_layers = getattr(config, "num_hidden_layers")
setattr(config, "num_hidden_layers", num_layers + num_expand)
config.save_pretrained(output_dir)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
tokenizer.save_pretrained(output_dir)
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) # load the original one
if save_safetensors:
setattr(config, "tie_word_embeddings", False) # safetensors does not allow shared weights
model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
config=config,
torch_dtype="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
)
state_dict = model.state_dict()
if num_layers % num_expand != 0:
raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand))
split = num_layers // num_expand
layer_cnt = 0
output_state_dict = OrderedDict()
for i in range(num_layers):
for key, value in state_dict.items():
if ".{:d}.".format(i) in key:
output_state_dict[change_name(key, i, layer_cnt)] = value
print("Add layer {} copied from layer {}".format(layer_cnt, i))
layer_cnt += 1
if (i + 1) % split == 0:
for key, value in state_dict.items():
if ".{:d}.".format(i) in key:
if "down_proj" in key or "o_proj" in key:
output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value)
else:
output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value)
print("Add layer {} expanded from layer {}".format(layer_cnt, i))
layer_cnt += 1
for key, value in state_dict.items():
if key not in output_state_dict:
output_state_dict[key] = value
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name)
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
if save_safetensors:
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
else:
torch.save(shard, os.path.join(output_dir, shard_file))
if index is None:
print("Model weights saved in {}".format(os.path.join(output_dir, weights_name)))
else:
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir))
print("- Fine-tune this model with:")
print("model_name_or_path: {}".format(output_dir))
print("finetuning_type: freeze")
print("freeze_trainable_layers: {}".format(num_expand))
print("use_llama_pro: true")
if __name__ == "__main__":
fire.Fire(block_expansion)