ed0e186a13 | ||
---|---|---|
assets | ||
data | ||
src | ||
tests | ||
.gitattributes | ||
LICENSE | ||
README.md | ||
pyproject.toml | ||
requirements.txt | ||
setup.py |
README.md
LLaMA Efficient Tuning
👋 Join our WeChat.
Changelog
[23/07/19] Now we support training the LLaMA-2 models in this repo. Try --model_name_or_path meta-llama/Llama-2-7b-hf
argument to use the LLaMA-2 model. Remember to use --prompt_template llama2
argument when you are using the LLaMA-2-chat model.
[23/07/18] Now we develop an all-in-one Web UI for training, evaluation and inference. Try train_web.py
to fine-tune models in your Web browser. Thank @KanadeSiina and @codemayq for their efforts in the development.
[23/07/11] Now we support training the Baichuan-13B model in this repo. Please replace the Baichuan-13B model file with tests/modeling_baichuan.py
and try --model_name_or_path path_to_baichuan_model
and --lora_target W_pack
arguments to train the Baichuan-13B model. Remember to use --prompt_template baichuan
argument when you are using the Baichuan-13B-Chat model.
[23/07/09] Now we release FastEdit⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow FastEdit if you are interested.
[23/07/07] Now we support training the InternLM-7B model in this repo. Try --model_name_or_path internlm/internlm-7b
argument to use the InternLM model. Remember to use --prompt_template intern
argument when you are using the InternLM-chat model.
[23/07/05] Now we support training the Falcon-7B/40B models in this repo. Try --model_name_or_path tiiuae/falcon-7b
and --lora_target query_key_value
arguments to use the Falcon model.
[23/06/29] We provide a reproducible example of training a chat model using instruction-following datasets, see this Hugging Face Repo for details.
[23/06/22] Now we align the demo API with the OpenAI's format where you can insert the fine-tuned model in arbitrary ChatGPT-based applications.
[23/06/15] Now we support training the Baichuan-7B model in this repo. Try --model_name_or_path baichuan-inc/Baichuan-7B
and --lora_target W_pack
arguments to use the Baichuan-7B model.
[23/06/03] Now we support quantized training and inference (aka QLoRA). Try --quantization_bit 4/8
argument to work with quantized model. (experimental feature)
[23/05/31] Now we support training the BLOOM & BLOOMZ models in this repo. Try --model_name_or_path bigscience/bloomz-7b1-mt
and --lora_target query_key_value
arguments to use the BLOOMZ model.
Supported Models
- LLaMA (7B/13B/33B/65B)
- LLaMA-2 (7B/13B/70B)
- BLOOM & BLOOMZ (560M/1.1B/1.7B/3B/7.1B/176B)
- Falcon (7B/40B)
- Baichuan (7B/13B)
- InternLM (7B)
Supported Training Approaches
Provided Datasets
- For pre-training:
- For supervised fine-tuning:
- Stanford Alpaca (en)
- Stanford Alpaca (zh)
- GPT-4 Generated Data (en&zh)
- Open Assistant (multilingual)
- Self-cognition (zh)
- ShareGPT (zh)
- RefGPT (zh)
- Guanaco Dataset (multilingual)
- BELLE 2M (zh)
- BELLE 1M (zh)
- BELLE 0.5M (zh)
- BELLE Dialogue 0.4M (zh)
- BELLE School Math 0.25M (zh)
- BELLE Multiturn Chat 0.8M (zh)
- Firefly 1.1M (zh)
- CodeAlpaca 20k (en)
- Alpaca CoT (multilingual)
- Web QA (zh)
- UltraChat (en)
- WebNovel (zh)
- For reward modelling:
Please refer to data/README.md for details.
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
pip install --upgrade huggingface_hub
huggingface-cli login
Requirement
- Python 3.8+ and PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
- jieba, rouge-chinese and nltk (used at evaluation)
- gradio and matplotlib (used in web_demo.py)
- uvicorn, fastapi and sse-starlette (used in api_demo.py)
And powerful GPUs!
If you want to enable quantized LoRA (QLoRA) on the Windows platform, you should install a pre-built version of bitsandbytes
library, which supports CUDA 11.1 to 12.1.
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
Getting Started
Data Preparation (optional)
Please refer to data/example_dataset
for checking the details about the format of dataset files. You can either use a single .json
file or a dataset loading script with multiple files to create a custom dataset.
Note: please update data/dataset_info.json
to use your custom dataset. About the format of this file, please refer to data/README.md
.
Dependence Installation (optional)
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
conda create -n llama_etuning python=3.10
conda activate llama_etuning
cd LLaMA-Efficient-Tuning
pip install -r requirements.txt
All-in-one Web UI
python src/train_web.py
(Continually) Pre-Training
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
--model_name_or_path path_to_your_model \
--do_train \
--dataset wiki_demo \
--finetuning_type lora \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
Supervised Fine-Tuning
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--do_train \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
Reward Model Training
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
--model_name_or_path path_to_your_model \
--do_train \
--dataset comparison_gpt4_en \
--finetuning_type lora \
--output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
PPO Training (RLHF)
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
--model_name_or_path path_to_your_model \
--do_train \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--resume_lora_training False \
--plot_loss
Distributed Training
accelerate config # configure the environment
accelerate launch src/train_bash.py # arguments (same as above)
Example configuration for full-tuning with DeepSpeed ZeRO-2
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 4
gradient_clipping: 0.5
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
downcast_bf16: 'no'
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
Evaluation (BLEU and ROUGE_CHINESE)
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--do_eval \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_eval_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
We recommend using --per_device_eval_batch_size=1
and --max_target_length 128
at 4/8-bit evaluation.
Predict
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--do_predict \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
If you want to predict the samples with empty responses, please kindly fill the response
column with dummy tokens to ensure the sample will not be discarded throughout the preprocessing phase.
API Demo
python src/api_demo.py \
--model_name_or_path path_to_your_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
Visit http://localhost:8000/docs
for API documentation.
CLI Demo
python src/cli_demo.py \
--model_name_or_path path_to_your_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
Web Demo
python src/web_demo.py \
--model_name_or_path path_to_your_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
Export model
python src/export_model.py \
--model_name_or_path path_to_your_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
License
This repository is licensed under the Apache-2.0 License.
Please follow the model licenses to use the corresponding model weights:
Citation
If this work is helpful, please kindly cite as:
@Misc{llama-efficient-tuning,
title = {LLaMA Efficient Tuning},
author = {hiyouga},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
year = {2023}
}
Acknowledgement
This repo is a sibling of ChatGLM-Efficient-Tuning. They share a similar code structure of efficient tuning on large language models.