LLaMA-Factory/tests/data/test_mm_plugin.py

170 lines
6.2 KiB
Python

# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, Any, Dict, List, Sequence, Tuple
import pytest
import torch
from PIL import Image
from llamafactory.data.mm_plugin import get_mm_plugin
from llamafactory.hparams import ModelArguments
from llamafactory.model import load_tokenizer
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
from llamafactory.data.mm_plugin import BasePlugin
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
MM_MESSAGES = [
{"role": "user", "content": "<image>What is in this image?"},
{"role": "assistant", "content": "A cat."},
]
TEXT_MESSAGES = [
{"role": "user", "content": "How are you"},
{"role": "assistant", "content": "I am fine!"},
]
IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]
NO_IMAGES = []
NO_VIDEOS = []
IMGLENS = [1]
NO_IMGLENS = [0]
NO_VIDLENS = [0]
INPUT_IDS = [0, 1, 2, 3, 4]
LABELS = [0, 1, 2, 3, 4]
SEQLENS = [1024]
def _get_mm_inputs(processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
return image_processor(images=IMAGES, return_tensors="pt")
def _is_close(batch_a: Dict[str, Any], batch_b: Dict[str, Any]) -> None:
assert batch_a.keys() == batch_b.keys()
for key in batch_a.keys():
if isinstance(batch_a[key], torch.Tensor):
assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5)
else:
assert batch_a[key] == batch_b[key]
def _load_tokenizer_module(model_name_or_path: str) -> Tuple["PreTrainedTokenizer", "ProcessorMixin"]:
model_args = ModelArguments(model_name_or_path=model_name_or_path)
tokenizer_module = load_tokenizer(model_args)
return tokenizer_module["tokenizer"], tokenizer_module["processor"]
def _check_plugin(
plugin: "BasePlugin",
tokenizer: "PreTrainedTokenizer",
processor: "ProcessorMixin",
expected_mm_messages: Sequence[Dict[str, str]] = MM_MESSAGES,
expected_input_ids: List[int] = INPUT_IDS,
expected_labels: List[int] = LABELS,
expected_mm_inputs: Dict[str, Any] = {},
expected_no_mm_inputs: Dict[str, Any] = {},
) -> None:
# test mm_messages
assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, processor) == expected_mm_messages
assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, tokenizer, processor) == (
expected_input_ids,
expected_labels,
)
_is_close(
plugin.get_mm_inputs(IMAGES, NO_VIDEOS, IMGLENS, NO_VIDLENS, SEQLENS, processor),
expected_mm_inputs,
)
# test text_messages
assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, processor) == TEXT_MESSAGES
assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, tokenizer, processor) == (
INPUT_IDS,
LABELS,
)
_is_close(
plugin.get_mm_inputs(NO_IMAGES, NO_VIDEOS, NO_IMGLENS, NO_VIDLENS, SEQLENS, processor),
expected_no_mm_inputs,
)
def test_base_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path=TINY_LLAMA)
base_plugin = get_mm_plugin(name="base", image_token="<image>")
check_inputs = {"plugin": base_plugin, "tokenizer": tokenizer, "processor": processor}
_check_plugin(**check_inputs)
def test_llava_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
llava_plugin = get_mm_plugin(name="llava", image_token="<image>")
image_seqlen = 576
check_inputs = {"plugin": llava_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_paligemma_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>")
image_seqlen = 256
check_inputs = {"plugin": paligemma_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES
]
check_inputs["expected_input_ids"] = [tokenizer.convert_tokens_to_ids("<image>")] * image_seqlen + INPUT_IDS
check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)]
check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]}
_check_plugin(**check_inputs)
def test_qwen2_vl_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>")
image_seqlen = 4
check_inputs = {"plugin": qwen2_vl_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{
key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen))
for key, value in message.items()
}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)