170 lines
6.2 KiB
Python
170 lines
6.2 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Sequence, Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from llamafactory.data.mm_plugin import get_mm_plugin
|
|
from llamafactory.hparams import ModelArguments
|
|
from llamafactory.model import load_tokenizer
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedTokenizer, ProcessorMixin
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
|
|
from llamafactory.data.mm_plugin import BasePlugin
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
|
|
|
MM_MESSAGES = [
|
|
{"role": "user", "content": "<image>What is in this image?"},
|
|
{"role": "assistant", "content": "A cat."},
|
|
]
|
|
|
|
TEXT_MESSAGES = [
|
|
{"role": "user", "content": "How are you"},
|
|
{"role": "assistant", "content": "I am fine!"},
|
|
]
|
|
|
|
IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]
|
|
|
|
NO_IMAGES = []
|
|
|
|
NO_VIDEOS = []
|
|
|
|
IMGLENS = [1]
|
|
|
|
NO_IMGLENS = [0]
|
|
|
|
NO_VIDLENS = [0]
|
|
|
|
INPUT_IDS = [0, 1, 2, 3, 4]
|
|
|
|
LABELS = [0, 1, 2, 3, 4]
|
|
|
|
SEQLENS = [1024]
|
|
|
|
|
|
def _get_mm_inputs(processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
|
|
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
|
return image_processor(images=IMAGES, return_tensors="pt")
|
|
|
|
|
|
def _is_close(batch_a: Dict[str, Any], batch_b: Dict[str, Any]) -> None:
|
|
assert batch_a.keys() == batch_b.keys()
|
|
for key in batch_a.keys():
|
|
if isinstance(batch_a[key], torch.Tensor):
|
|
assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5)
|
|
else:
|
|
assert batch_a[key] == batch_b[key]
|
|
|
|
|
|
def _load_tokenizer_module(model_name_or_path: str) -> Tuple["PreTrainedTokenizer", "ProcessorMixin"]:
|
|
model_args = ModelArguments(model_name_or_path=model_name_or_path)
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
return tokenizer_module["tokenizer"], tokenizer_module["processor"]
|
|
|
|
|
|
def _check_plugin(
|
|
plugin: "BasePlugin",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
processor: "ProcessorMixin",
|
|
expected_mm_messages: Sequence[Dict[str, str]] = MM_MESSAGES,
|
|
expected_input_ids: List[int] = INPUT_IDS,
|
|
expected_labels: List[int] = LABELS,
|
|
expected_mm_inputs: Dict[str, Any] = {},
|
|
expected_no_mm_inputs: Dict[str, Any] = {},
|
|
) -> None:
|
|
# test mm_messages
|
|
assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, processor) == expected_mm_messages
|
|
assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, tokenizer, processor) == (
|
|
expected_input_ids,
|
|
expected_labels,
|
|
)
|
|
_is_close(
|
|
plugin.get_mm_inputs(IMAGES, NO_VIDEOS, IMGLENS, NO_VIDLENS, SEQLENS, processor),
|
|
expected_mm_inputs,
|
|
)
|
|
# test text_messages
|
|
assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, processor) == TEXT_MESSAGES
|
|
assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, tokenizer, processor) == (
|
|
INPUT_IDS,
|
|
LABELS,
|
|
)
|
|
_is_close(
|
|
plugin.get_mm_inputs(NO_IMAGES, NO_VIDEOS, NO_IMGLENS, NO_VIDLENS, SEQLENS, processor),
|
|
expected_no_mm_inputs,
|
|
)
|
|
|
|
|
|
def test_base_plugin():
|
|
tokenizer, processor = _load_tokenizer_module(model_name_or_path=TINY_LLAMA)
|
|
base_plugin = get_mm_plugin(name="base", image_token="<image>")
|
|
check_inputs = {"plugin": base_plugin, "tokenizer": tokenizer, "processor": processor}
|
|
_check_plugin(**check_inputs)
|
|
|
|
|
|
def test_llava_plugin():
|
|
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
|
|
llava_plugin = get_mm_plugin(name="llava", image_token="<image>")
|
|
image_seqlen = 576
|
|
check_inputs = {"plugin": llava_plugin, "tokenizer": tokenizer, "processor": processor}
|
|
check_inputs["expected_mm_messages"] = [
|
|
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
|
|
for message in MM_MESSAGES
|
|
]
|
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
|
_check_plugin(**check_inputs)
|
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
|
def test_paligemma_plugin():
|
|
tokenizer, processor = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
|
|
paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>")
|
|
image_seqlen = 256
|
|
check_inputs = {"plugin": paligemma_plugin, "tokenizer": tokenizer, "processor": processor}
|
|
check_inputs["expected_mm_messages"] = [
|
|
{key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES
|
|
]
|
|
check_inputs["expected_input_ids"] = [tokenizer.convert_tokens_to_ids("<image>")] * image_seqlen + INPUT_IDS
|
|
check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS
|
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
|
check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)]
|
|
check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]}
|
|
_check_plugin(**check_inputs)
|
|
|
|
|
|
def test_qwen2_vl_plugin():
|
|
tokenizer, processor = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
|
|
qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>")
|
|
image_seqlen = 4
|
|
check_inputs = {"plugin": qwen2_vl_plugin, "tokenizer": tokenizer, "processor": processor}
|
|
check_inputs["expected_mm_messages"] = [
|
|
{
|
|
key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen))
|
|
for key, value in message.items()
|
|
}
|
|
for message in MM_MESSAGES
|
|
]
|
|
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
|
_check_plugin(**check_inputs)
|